The INTErventions, Research, and Action in Cities Team (INTERACT) is a national research collaboration of scientists, urban planners, and engaged citizens uncovering how the design of our cities is shaping the health and wellbeing of Canadians (www.teaminteract.ca). INTERACT is conducting longitudinal, mixed-methods natural experiment studies in four Canadian cities, with the aim of providing evidence on the impacts of urban transformations on people’s physical activity, social connectedness, and wellbeing, and inequalities in these outcomes.

The Arbutus Greenway in Vancouver is a 9-km former rail corridor, which is being developed into a continuous walking and cycling corridor connecting South Vancouver to False Creek. Participants who lived in one of the 12 Forward Sortation Area (FSA) within 3 km of the Arbutus Greenway were eligible to participate. Exclusion criteria across all sites were being younger than 18 years old, not being able to read or write English (or English or French in Montreal) well enough to answer an online survey and any intention to move out of the region in the next two years.

Participants were recruited through social media, news media, street and community events outreach, and partner newsletters. Responses were collected between August 26th, 2020 and February 7th, 2021. In Vancouver, 194 returning participants, and 106 new participants completed the Health Questionnaire, for a total of 300 responses.

Section 1: Transportation

What is your main mode of transportation?

#transp_main_mode

var_name <- w2$transp_main_mode2

w2$var_name_f <- recode_factor(var_name, "1" = "Walking / Wheeling (with a mobility assistive device)",  "2" = "Biking", "3"= "Public Transit", "4" = "Car", "5"= "Motorcycle or scooter", "6"= "Other")

var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Walking / Wheeling (with a mobility assistive device) 110 36.67
Biking 49 16.33
Public Transit 26 8.67
Car 111 37.00
Motorcycle or scooter 2 0.67
Other 2 0.67

How much do you enjoy using each transportation mode?

Walking

#preferred_mode_a walking

var_name <- w2$preferred_mode_a2
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 208 69.33
2 59 19.67
3 19 6.33
4 Not at all 3 1.00
Not applicable 11 3.67

Biking

#preferred_mode_b biking

var_name <- w2$preferred_mode_b
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 115 38.33
2 50 16.67
3 47 15.67
4 Not at all 27 9.00
Not applicable 61 20.33

Public transit

#preferred_mode_c public transit
var_name <- w2$preferred_mode_c
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 14 4.67
2 42 14.00
3 116 38.67
4 Not at all 96 32.00
Not applicable 32 10.67

Car

#preferred_mode_d car
var_name <- w2$preferred_mode_d
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 68 22.67
2 100 33.33
3 95 31.67
4 Not at all 12 4.00
Not applicable 25 8.33

Motorcycle or scooter

#preferred_mode_e motorcycle or scooter
var_name <- w2$preferred_mode_e
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot","2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p) 

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 7 2.33
2 3 1.00
3 3 1.00
4 Not at all 57 19.00
Not applicable 230 76.67

Thinking of how you felt prior to the COVID-19 pandemic, how much did you enjoy using each transportation mode?

walking

#preferred_mode_a walking

var_name <- w2$preferred_mode_prior_a2
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3","4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 210 70.00
2 59 19.67
3 15 5.00
4 Not at all 3 1.00
Not applicable 13 4.33

biking

#preferred_mode_b biking

var_name <- w2$preferred_mode_prior_b
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3","4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 118 39.33
2 67 22.33
3 34 11.33
4 Not at all 18 6.00
Not applicable 63 21.00

public transit

#preferred_mode_c public transit
var_name <- w2$preferred_mode_prior_c
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 58 19.33
2 108 36.00
3 72 24.00
4 Not at all 43 14.33
Not applicable 19 6.33

car

#preferred_mode_d car
var_name <- w2$preferred_mode_prior_d
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 74 24.67
2 104 34.67
3 82 27.33
4 Not at all 16 5.33
Not applicable 24 8.00

motorcycle or scooter

#preferred_mode_e motorcycle or scooter
var_name <- w2$preferred_mode_prior_e
w2$var_name_f <- recode_factor(var_name, "1" = "1 A lot", "2" = "2", "3" = "3", "4" = "4 Not at all", "5" = "Not applicable")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            mutate(pct = round(100*n/sum(n),2))


p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) +
  geom_bar(stat="identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Percent") +
      xlab("") +
      ggtitle("") +  
  facet_wrap(~ compare)
plot(p) 

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1 A lot 6 2
2 3 1
3 3 1
4 Not at all 39 13
Not applicable 249 83

Do you have access to a car?

var_name <- w2$car_access
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(var_name_f,  y = pct, fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 265 88.33
No 35 11.67

Do you have access to a bicycle?

#bike_access 

var_name <- w2$bike_access
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(var_name_f, y= pct, fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 235 78.33
No 65 21.67

On a scale of 1 to 5, with 1 being ‘very safe’ and 5 being ‘very dangerous’, overall, how safe do you think cycling is in your city?

#bike_safety
var_name <- w2$bike_safety
w2$var_name_f <- recode_factor(var_name, "1" = "Very safe", "2" = "Somewhat safe", "3" = "Neither safe nor unsafe", "4" = "Somewhat dangerous", "5" = "Very dangerous", "77" = "I don't know/prefer not to say")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very safe 50 16.67
Somewhat safe 156 52.00
Neither safe nor unsafe 31 10.33
Somewhat dangerous 58 19.33
Very dangerous 3 1.00
I don’t know/prefer not to say 2 0.67

Have you ever heard of the Arbutus Greenway?

#ag_familiarty 

var_name <- w2$ag_familiarity
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 298 99.33
No 2 0.67

Do you think that the Arbutus Greenway is a good or bad idea for Vancouver? It is a…

var_name <- w2$ag_idea
w2$var_name_f <- recode_factor(var_name, "1" = "Very good idea", "2" = "Somewhat good idea", "3" = "Somewhat bad idea", "4" = "Very bad idea", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very good idea 278 92.67
Somewhat good idea 17 5.67
Somewhat bad idea 3 1.00
I don’t know 2 0.67

Have you ever used the Arbutus Greenway?

#ag_used_ever
var_name <- w2$ag_used_ever
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 284 94.67
No 16 5.33

How often do you typically travel by foot along the Arbutus Greenway during each season?

# ag_walk_freq_a
w2$ag_walk_freq2_a[w2$ag_walk_freq2_a==-7] <- NA
w2$ag_walk_freq2_b[w2$ag_walk_freq2_b==-7] <- NA
w2$ag_walk_freq2_c[w2$ag_walk_freq2_c==-7] <- NA
w2$ag_walk_freq2_d[w2$ag_walk_freq2_d==-7] <- NA

fall <- ggplot(w2, aes(x = w2$ag_walk_freq2_a)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#BF5B04") + xlab("Times in the fall") + facet_wrap(~ compare)
winter <- ggplot(w2, aes(x = w2$ag_walk_freq2_b)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#35AAF2") + xlab("Times in the winter") + facet_wrap(~ compare)
spring <- ggplot(w2, aes(x = w2$ag_walk_freq2_c)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#76D24A") + xlab("Times in the spring")+ facet_wrap(~ compare)
summer <- ggplot(w2, aes(x = w2$ag_walk_freq2_d)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#F2B705") + xlab("Times in the summer")+ facet_wrap(~ compare)

grid.arrange(fall,winter,spring,summer)

How often do you typically travel by bicycle along the Arbutus Greenway during each season?

# ag_bike_freq_a

w2$ag_bike_freq_a[w2$ag_bike_freq_a==-7] <- NA
w2$ag_bike_freq_b[w2$ag_bike_freq_b==-7] <- NA
w2$ag_bike_freq_c[w2$ag_bike_freq_c==-7] <- NA
w2$ag_bike_freq_d[w2$ag_bike_freq_d==-7] <- NA

fall <- ggplot(w2, aes(x = w2$ag_bike_freq_a)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#BF5B04") + xlab("Times in the fall")     + facet_wrap(~ compare)
winter <- ggplot(w2, aes(x = w2$ag_bike_freq_b)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#35AAF2") + xlab("Times in the winter")+ facet_wrap(~ compare)
spring <- ggplot(w2, aes(x = w2$ag_bike_freq_c)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#76D24A") + xlab("Times in the spring")+ facet_wrap(~ compare)
summer <- ggplot(w2, aes(x = w2$ag_bike_freq_d)) + geom_histogram (na.rm = TRUE, binwidth = 5, fill="#F2B705") + xlab("Times in the summer")+ facet_wrap(~ compare)


grid.arrange(fall,winter,spring,summer)

How do you usually get to the Arbutus Greenway?

#intercept_ag_mode
w2$intercept_ag_mode2[w2$intercept_ag_mode2==-7] <- NA

var_name <- w2$intercept_ag_mode2
w2$var_name_f <- recode_factor(var_name, "1" = "Walking",  "2" = "Running/Jogging", "3"= "Biking", "4" = "Public Transit", "5"= "Car", "6"= "Motorcycle or scooter", "7" ="Other")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalettecont) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Walking 148 49.33
Running/Jogging 14 4.67
Biking 105 35.00
Public Transit 3 1.00
Car 9 3.00
Other 5 1.67
NA 16 5.33

What is your usual reason for using the Arbutus Greenway?

# intercept_ag_reason
w2$intercept_ag_reason[w2$intercept_ag_reason==-7] <- NA
var_name <- w2$intercept_ag_reason
w2$var_name_f <- recode_factor(var_name, "1" = "For recreation", "2" = "For transportation", "3" = "Both for recreation and transportation")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
For recreation 106 35.33
For transportation 35 11.67
Both for recreation and transportation 143 47.67
NA 16 5.33

In your opinion, the maintenance of the Arbutus Greenway is excellent, good, fair, or poor?

## intercept_ag_maintenance
w2$intercept_ag_maintenance[w2$intercept_ag_maintenance==-7] <- NA
var_name <- w2$intercept_ag_maintenance
w2$var_name_f <- recode_factor(var_name, "1" = "Excellent", "2" = "Good", "3" = "Fair", "4" ="Poor", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Excellent 134 44.67
Good 126 42.00
Fair 20 6.67
Poor 1 0.33
I don’t know 3 1.00
NA 16 5.33

How safe do you feel travelling along the Arbutus Greenway in terms of

safety from traffic?

#intercept_ag_safety_traffic 

w2$intercept_ag_safety_traffic[w2$intercept_ag_safety_traffic==-7] <- NA
var_name <- w2$intercept_ag_safety_traffic
w2$var_name_f <- recode_factor(var_name, "1" = "Very safe", "2" = "Somewhat safe", "3" = "Neither safe nor unsafe", "4" ="Somewhat unsafe", "5" =  "Very unsafe" , "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very safe 186 62.00
Somewhat safe 82 27.33
Neither safe nor unsafe 9 3.00
Somewhat unsafe 6 2.00
Very unsafe 1 0.33
NA 16 5.33

personal safety?

#intercept_ag_safety_personal 
w2$intercept_ag_safety_personal[w2$intercept_ag_safety_personal==-7] <- NA
w2$intercept_ag_safety_traffic[w2$intercept_ag_safety_personal==-7] <- NA
var_name <- w2$intercept_ag_safety_personal
w2$var_name_f <- recode_factor(var_name, "1" = "Very safe", "2" = "Somewhat safe", "3" = "Neither safe nor unsafe", "4" ="Somewhat unsafe", "5" =  "Very unsafe" , "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very safe 191 63.67
Somewhat safe 81 27.00
Neither safe nor unsafe 7 2.33
Somewhat unsafe 4 1.33
I don’t know 1 0.33
NA 16 5.33

Are you using the Arbutus Greenway (walking, biking, etc.) more, less, or the same since spring 2017?

#intercept_ag_spring

w2$intercept_ag_spring2[w2$intercept_ag_spring2==-7] <- NA

var_name <- w2$intercept_ag_spring2
w2$var_name_f <- recode_factor(var_name, "1" = "More", "2" = "Same", "3" = "Less", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
More 137 45.67
Same 93 31.00
Less 50 16.67
I don’t know 4 1.33
NA 16 5.33

Do you plan to use the Arbutus Greenway in the future?

# intercept_ag_future
var_name <- w2$intercept_ag_future
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 295 98.33
No 5 1.67

Would any of the following amenities encourage you to use the Arbutus Greenway more? Check ALL that apply.

New participants

*Participants could choose many options. Count is number of times option was selected.

# 1 Recycling or waste receptacles/garbage cans
# 2 Benches
# 3 Bathrooms
# 4 Lighting
# 5 Water fountains
# 6 Picnic areas
# 7 Playgrounds
# 8 Mobi stations
# 9 Public art
# 10    Shady zones
# 99    Other (Please specify)
# -7    Not applicable

#new
intercept_ag_amenities_1 <-   as.numeric(table(new$intercept_ag_amenities_1[new$intercept_ag_amenities_1==1]))
intercept_ag_amenities_2 <-   as.numeric(table(new$intercept_ag_amenities_2[new$intercept_ag_amenities_2==1]))
intercept_ag_amenities_3 <-   as.numeric(table(new$intercept_ag_amenities_3[new$intercept_ag_amenities_3==1]))
intercept_ag_amenities_4 <-   as.numeric(table(new$intercept_ag_amenities_4[new$intercept_ag_amenities_4==1]))
intercept_ag_amenities_5 <-   as.numeric(table(new$intercept_ag_amenities_5[new$intercept_ag_amenities_5==1]))
intercept_ag_amenities_6 <-   as.numeric(table(new$intercept_ag_amenities_6[new$intercept_ag_amenities_6==1]))
intercept_ag_amenities_7 <-   as.numeric(table(new$intercept_ag_amenities_7[new$intercept_ag_amenities_7==1]))
intercept_ag_amenities_8 <-   as.numeric(table(new$intercept_ag_amenities_8[new$intercept_ag_amenities_8==1]))
intercept_ag_amenities_9 <-   as.numeric(table(new$intercept_ag_amenities_9[new$intercept_ag_amenities_9==1]))
intercept_ag_amenities_10 <- as.numeric(table(new$intercept_ag_amenities_10[new$intercept_ag_amenities_10==1]))
intercept_ag_amenities_99 <- as.numeric(table(new$intercept_ag_amenities_99[new$intercept_ag_amenities_99==1]))

amenities_new <- data.frame(Response = c("Recycling or waste receptacles/garbage cans", 
                            "Benches", 
                            "Bathrooms", 
                            "Lighting", 
                            "Water fountains", 
                            "Picnic areas", 
                            "Playgrounds", 
                            "Mobi Stations", 
                            "Public art", 
                            "Shady zones", 
                            "Other"), 
                            Frequency= c(intercept_ag_amenities_1 ,intercept_ag_amenities_2 ,intercept_ag_amenities_3 ,intercept_ag_amenities_4 ,intercept_ag_amenities_5 ,intercept_ag_amenities_6 ,intercept_ag_amenities_7 ,intercept_ag_amenities_8 ,intercept_ag_amenities_9 ,intercept_ag_amenities_10,intercept_ag_amenities_99))
 
kable(amenities_new) %>%  kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Response Frequency
Recycling or waste receptacles/garbage cans 46
Benches 50
Bathrooms 51
Lighting 66
Water fountains 37
Picnic areas 42
Playgrounds 18
Mobi Stations 3
Public art 45
Shady zones 37
Other 15

Returning participants

*Participants could choose many options. Count is number of times option was selected.

#returning

intercept_ag_amenities_1 <-  as.numeric(table(ret$intercept_ag_amenities_1[ret$intercept_ag_amenities_1==1]))
intercept_ag_amenities_2 <-  as.numeric(table(ret$intercept_ag_amenities_2[ret$intercept_ag_amenities_2==1]))
intercept_ag_amenities_3 <-  as.numeric(table(ret$intercept_ag_amenities_3[ret$intercept_ag_amenities_3==1]))
intercept_ag_amenities_4 <-  as.numeric(table(ret$intercept_ag_amenities_4[ret$intercept_ag_amenities_4==1]))
intercept_ag_amenities_5 <-  as.numeric(table(ret$intercept_ag_amenities_5[ret$intercept_ag_amenities_5==1]))
intercept_ag_amenities_6 <-  as.numeric(table(ret$intercept_ag_amenities_6[ret$intercept_ag_amenities_6==1]))
intercept_ag_amenities_7 <-  as.numeric(table(ret$intercept_ag_amenities_7[ret$intercept_ag_amenities_7==1]))
intercept_ag_amenities_8 <-  as.numeric(table(ret$intercept_ag_amenities_8[ret$intercept_ag_amenities_8==1]))
intercept_ag_amenities_9 <-  as.numeric(table(ret$intercept_ag_amenities_9[ret$intercept_ag_amenities_9==1]))
intercept_ag_amenities_10 <- as.numeric(table(ret$intercept_ag_amenities_10[ret$intercept_ag_amenities_10==1]))
intercept_ag_amenities_99 <- as.numeric(table(ret$intercept_ag_amenities_99[ret$intercept_ag_amenities_99==1]))

amenities_ret <- data.frame(Response = c("Recycling or waste receptacles/garbage cans", 
                            "Benches", 
                            "Bathrooms", 
                            "Lighting", 
                            "Water fountains", 
                            "Picnic areas", 
                            "Playgrounds", 
                            "Mobi Stations", 
                            "Public art", 
                            "Shady zones", 
                            "Other"), 
                            Frequency= c(intercept_ag_amenities_1 ,intercept_ag_amenities_2 ,intercept_ag_amenities_3 ,intercept_ag_amenities_4 ,intercept_ag_amenities_5 ,intercept_ag_amenities_6 ,intercept_ag_amenities_7 ,intercept_ag_amenities_8 ,intercept_ag_amenities_9 ,intercept_ag_amenities_10,intercept_ag_amenities_99))
 
kable(amenities_ret) %>%  kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Response Frequency
Recycling or waste receptacles/garbage cans 78
Benches 90
Bathrooms 87
Lighting 93
Water fountains 64
Picnic areas 52
Playgrounds 22
Mobi Stations 12
Public art 61
Shady zones 73
Other 38

Section 2: Physical Activity

During the last 7 days, on how many days did you do vigorous physical activities like heavy lifting, digging, heavy construction, or climbing up stairs as part of your work? Think about only those physical activities that you did for at least 10 minutes at a time.

#work_vigpa

ggplot(w2, aes(x = w2$work_vigpa)) + geom_histogram(na.rm = TRUE, fill = "#1596FF") + xlab("N days vigorous job-related physical activity") + facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$work_vigpa)), Percentage = round(as.numeric(prop.table(table(w2$work_vigpa)))*100,2))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 241 80.33
1 17 5.67
2 7 2.33
3 6 2.00
4 9 3.00
5 7 2.33
6 2 0.67
7 11 3.67

How much time did you usually spend on one of those days doing vigorous physical activities as part of your work?

#work_vigpa_freq

w2$work_vigpa_freq[w2$work_vigpa_freq==-7] <- NA

ggplot(w2, aes(x = work_vigpa_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes vigorous job-related physical activity") + facet_wrap(~ compare)

summary(w2$work_vigpa_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00   15.00   60.00   71.69   85.00  480.00     241

During the last 7 days, on how many days did you travel in a motor vehicle like a train, bus, car, or metro?

#travel_motor

ggplot(w2, aes(x = w2$travel_motor)) + geom_histogram(na.rm = TRUE, fill="#1596FF") + xlab("N days") + facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$travel_motor)), Percentage = round(as.numeric(prop.table(table(w2$travel_motor)))*100,2))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 38 12.67
1 44 14.67
2 52 17.33
3 43 14.33
4 36 12.00
5 30 10.00
6 22 7.33
7 35 11.67

How much time did you usually spend on one of those days travelling in a train, bus, car, metro, or other kind of motor vehicle?

#travel_motor_freq

w2$travel_motor_freq[w2$travel_motor_freq==-7] <- NA
ggplot(w2, aes(x = w2$travel_motor_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes travel time") + facet_wrap(~ compare)

summary(w2$travel_motor_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00   30.00   40.00   52.62   60.00  600.00      38

During the last 7 days, on how many days did you bicycle for at least 10 minutes at a time to go from place to place?

#travel_bike

ggplot(w2, aes(x = w2$travel_bike)) + geom_histogram(na.rm = TRUE, fill="#1596FF") + xlab("N days")+ facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$travel_bike)), Percentage = round(as.numeric(prop.table(table(w2$travel_bike)))*100,2))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 185 61.67
1 33 11.00
2 22 7.33
3 21 7.00
4 16 5.33
5 12 4.00
6 7 2.33
7 4 1.33

How much time did you usually spend on one of those days to bicycle from place to place?

#travel_bike_freq

w2$travel_bike_freq[w2$travel_bike_freq==-7] <- NA
ggplot(w2, aes(x = w2$travel_bike_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes travel time") + facet_wrap(~ compare)

summary(w2$travel_bike_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00   30.00   60.00   55.96   60.00  240.00     185

During the last 7 days, on how many days did you walk for at least 10 minutes at a time to go from place to place?

#travel_walk

ggplot(w2, aes(x = w2$travel_walk)) + geom_histogram(na.rm = TRUE, fill="#1596FF") + xlab("# of days in the last 7 days")+ facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$travel_walk)), Percentage = round(as.numeric(prop.table(table(w2$travel_walk)))*100,2))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 23 7.67
1 17 5.67
2 39 13.00
3 43 14.33
4 34 11.33
5 35 11.67
6 23 7.67
7 86 28.67

How much time did you usually spend on one of those days walking from place to place?

#travel_walk_freq

w2$travel_walk_freq[w2$travel_walk_freq==-7] <- NA

ggplot(w2, aes(x = w2$travel_walk_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes travel time") + facet_wrap(~ compare)

summary(w2$travel_walk_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   10.00   30.00   40.00   48.62   60.00  300.00      23

Not counting any walking for transportation that you have already mentioned, during the last 7 days, on how many days did you walk for at least 10 minutes at a time in your leisure time?

#leisure_walk

ggplot(w2, aes(x = w2$leisure_walk)) + geom_histogram(na.rm = TRUE, fill="#1596FF") + xlab("N days")+ facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$leisure_walk)), Percentage = round(as.numeric(prop.table(table(w2$leisure_walk))*100,2)))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 48 16
1 25 8
2 41 14
3 32 11
4 26 9
5 20 7
6 20 7
7 88 29

How much time did you usually spend on one of those days walking in your leisure time?

#leisure_walk_freq

w2$leisure_walk_freq[w2$leisure_walk_freq==-7] <- NA

ggplot(w2, aes(x = w2$leisure_walk_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes leisure time") + facet_wrap(~ compare)

summary(w2$leisure_walk_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    3.00   30.00   60.00   57.87   60.00  300.00      48

Think about only those physical activities that you did for at least 10 minutes at a time, not counting any activity for transportation or work that you have already mentioned. During the last 7 days, on how many days did you do vigorous physical activities like aerobics, running, fast bicycling, or fast swimming in your leisure time?

#leisure_vigpa

ggplot(w2, aes(x = leisure_vigpa)) + geom_histogram(na.rm = TRUE, fill="#1596FF") + xlab("N days")+ facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$leisure_vigpa)), Percentage = round(as.numeric(prop.table(table(w2$leisure_vigpa))*100,2)))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 139 46
1 30 10
2 35 12
3 37 12
4 20 7
5 22 7
6 10 3
7 7 2

How much time did you usually spend on one of those days doing vigorous physical activities in your leisure time?

#leisure_vigpa_freq

w2$leisure_vigpa_freq[w2$leisure_vigpa_freq==-7] <- NA

ggplot(w2, aes(x = leisure_vigpa_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes leisure time") 

summary(w2$leisure_vigpa_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00   30.00   60.00   74.38   60.00 1800.00     139

During the last 7 days, on how many days did you do moderate physical activities like bicycling at a regular pace, swimming at a regular pace, or doubles tennis in your leisure time?

#leisure_modpa

ggplot(w2, aes(x = leisure_modpa)) + geom_histogram(na.rm = TRUE, fill="#1596FF") + xlab("N days")+ facet_wrap(~ compare)

kable(data.frame(Days = 0:7, N = as.numeric(table(w2$leisure_modpa)), Percentage = round(as.numeric(prop.table(table(w2$leisure_modpa))*100,2)))) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Days N Percentage
0 174 58
1 34 11
2 31 10
3 22 7
4 14 5
5 12 4
6 6 2
7 7 2

How much time did you usually spend on one of those days doing moderate physical activities in your leisure time?

#leisure_modpa_freq

w2$leisure_modpa_freq[w2$leisure_modpa_freq==-7] <- NA

ggplot(w2, aes(x = w2$leisure_modpa_freq)) + geom_histogram(na.rm = TRUE, binwidth = 20, fill= "#35AAC2") + xlab("Minutes leisure time") + facet_wrap(~ compare)

summary(w2$leisure_modpa_freq)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   10.00   30.00   60.00   66.75   60.00  900.00     174

During the last 7 days, how much time did you usually spend sitting on a weekday?

#sit_weekday

ggplot(w2, aes(x = w2$sit_weekday/60)) + geom_histogram(na.rm = TRUE, binwidth = 1, fill= "#35AAC2") + xlab("Hours sitting, weekday") + facet_wrap(~ compare)

summary(w2$sit_weekday)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    20.0   240.0   360.0   387.2   495.0   960.0

During the last 7 days, how much time did you usually spend sitting on a weekend day?

#sit_weekend

ggplot(w2, aes(x = w2$sit_weekend/60)) + geom_histogram(na.rm = TRUE, binwidth = 1, fill= "#35AAC2") + xlab("Hours sitting, weekend") + facet_wrap(~ compare)

summary(w2$sit_weekend)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0     180     300     317     420     960

Section 3: General Health

How tall are you?

#height

#exclude outliers?

ggplot(w2, aes(x = w2$height)) + geom_histogram(na.rm = TRUE, binwidth = 2, fill="#76D24A") + xlab("Height (cm)") + facet_wrap(~ compare)

summary(w2$height)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   150.0   163.0   168.0   169.5   175.0   193.0

How much do you weigh?

#weight

ggplot(w2, aes(x = w2$weight)) + geom_histogram(na.rm = TRUE, binwidth = 2, fill="#76D24A") + xlab("Weight (kg)") + facet_wrap(~ compare)

summary(w2$weight)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   45.00   60.00   68.00   71.11   80.00  141.00

In general, would you say your health is:

#sf1

var_name <- w2$sf1
w2$var_name_f <- recode_factor(var_name, "1" = "Excellent", "2" = "Very good", "3" = "Good", "4" = "Fair", "5" = "Poor")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Excellent 61 20.33
Very good 129 43.00
Good 87 29.00
Fair 17 5.67
Poor 6 2.00

The following questions are about activities you might do during a typical day. Does your health now limit you in these activities? If so, how much?

a. Moderate activities such as moving a table, pushing a vacuum cleaner, bowling, or playing golf

var_name <- w2$sf2
w2$var_name_f <- recode_factor(var_name, "1" = "Yes, limited a lot",  "2" = "Yes, limited a little", "3" = "No, not at all")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes, limited a lot 8 2.67
Yes, limited a little 40 13.33
No, not at all 252 84.00

b. Climbing several flights of stairs

var_name <- w2$sf3
w2$var_name_f <- recode_factor(var_name, "1" = "Yes, limited a lot",  "2" = "Yes, limited a little", "3" = "No, not at all")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes, limited a lot 17 5.67
Yes, limited a little 49 16.33
No, not at all 234 78.00

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of your physical health?

a. Accomplished less than you would like

#sf4 
var_name <- w2$sf4
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 72 24
No 228 76

b. Were limited in the kind of work or other activities

var_name <- w2$sf5
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 56 18.67
No 244 81.33

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of any emotional problems (such as feeling depressed or anxious)?

a. Accomplished less than you would like

var_name <- w2$sf6
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 111 37
No 189 63

b. Did work or activities less carefully than usual

var_name <- w2$sf7
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 57 19
No 243 81

During the past 4 weeks, how much did pain interfere with your normal work (including work outside the home and housework)?

var_name <- w2$sf8
w2$var_name_f <- recode_factor(var_name, "1" = "Not at all",  "2" = "Slightly", "3" = "Moderately", "4" =  "Quite a bit", "5" = "Extremely")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Not at all 172 57.33
Slightly 86 28.67
Moderately 28 9.33
Quite a bit 10 3.33
Extremely 4 1.33

How much of the time during the past 4 weeks.

a. Have you felt calm and peaceful?

var_name <- w2$sf9
w2$var_name_f <- recode_factor(var_name, "1" = "All of the time",  "2" = "Most of the time", "3" = "A good bit of the time", "4" =  "Some of the time", "5" = "A little of the time", "6" = "None of the time")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
All of the time 20 6.67
Most of the time 98 32.67
A good bit of the time 77 25.67
Some of the time 71 23.67
A little of the time 25 8.33
None of the time 9 3.00

b. Did you have a lot of energy?

var_name <- w2$sf10
w2$var_name_f <- recode_factor(var_name, "1" = "All of the time",  "2" = "Most of the time", "3" = "A good bit of the time", "4" =  "Some of the time", "5" = "A little of the time", "6" = "None of the time")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
All of the time 20 6.67
Most of the time 83 27.67
A good bit of the time 74 24.67
Some of the time 76 25.33
A little of the time 32 10.67
None of the time 15 5.00

c. Have you felt downhearted and blue?

var_name <- w2$sf11
w2$var_name_f <- recode_factor(var_name, "1" = "All of the time",  "2" = "Most of the time", "3" = "A good bit of the time", "4" =  "Some of the time", "5" = "A little of the time", "6" = "None of the time")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
All of the time 5 1.67
Most of the time 17 5.67
A good bit of the time 29 9.67
Some of the time 58 19.33
A little of the time 127 42.33
None of the time 64 21.33

During the past 4 weeks, how much of the time has your physical health or emotional problems interfered with your social activities (like visiting friends, relatives, etc.)?

var_name <- w2$sf12
w2$var_name_f <- recode_factor(var_name, "1" = "All of the time",  "2" = "Most of the time", "3" = "A good bit of the time", "4" =  "Some of the time", "5" = "A little of the time", "6" = "None of the time")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
All of the time 5 1.67
Most of the time 12 4.00
A good bit of the time 18 6.00
Some of the time 37 12.33
A little of the time 49 16.33
None of the time 179 59.67

Section 4: Well-being

Thinking about your own life and personal circumstances, how satisfied are you.

t_1 <- select(w2, compare, pwb_vic_a, pwb_vic_b, pwb_vic_c, pwb_vic_d, pwb_vic_e, pwb_vic_f, pwb_vic_g, pwb_vic_h, pwb_vic_i)
t_1 <- pivot_longer(t_1,
   cols = starts_with("pwb_vic_"),
   names_to = "perception",
   names_prefix = "pwb_vic_",
   values_to = "values",
   values_drop_na = TRUE)
## rename 

t_1$perception[t_1$perception== "a"] <- "a. With your life as a whole?"
t_1$perception[t_1$perception== "b"] <- "b. With your standard of living?"
t_1$perception[t_1$perception== "c"] <- "c. With your health?"
t_1$perception[t_1$perception== "d"] <- "d. With what you are achieving in life?"
t_1$perception[t_1$perception== "e"] <- "e. With your personal relationships?"
t_1$perception[t_1$perception== "f"] <- "f. With how safe you feel?"
t_1$perception[t_1$perception== "g"] <- "g. With feeling part of your community?"
t_1$perception[t_1$perception== "h"] <- "h. With your future security?"
t_1$perception[t_1$perception== "i"] <- "i. With your spirituality or religion?"

## recode

t_1$values <- recode_factor(t_1$values, "10" = "10- Completely dissatisfied", "9" = "9","8" = "8","7" = "7", "6" = "6", "5" = "5", "4" = "4", "3" = "3", "2" = "2", "1" = "1- Completely satisfied")

##### Table
t_1<- t_1 %>% 
  group_by(compare, perception, values) %>% 
  dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x= perception, y= pct, fill= values)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
     coord_flip() +
  scale_fill_manual(values = rev(INTERACTPalettecont11)) +
      ylab("Percent") +
      xlab("Response") + 
    facet_wrap(~ compare)
  plot(p)

In general, I consider myself:

#gwb_a

var_name <- w2$gwb_a
w2$var_name_f <- recode_factor(var_name, "1" = "1- Not a very happy person", "2" = "2", "3" = "3", "4" = "4", "5" = "5", "6" = "6", "7" = "7- A very happy person")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1- Not a very happy person 4 1.33
2 6 2.00
3 7 2.33
4 24 8.00
5 64 21.33
6 126 42.00
7- A very happy person 69 23.00

Compared with most of my peers, I consider myself:

#gwb_b

var_name <- w2$gwb_b
w2$var_name_f <- recode_factor(var_name, "1" = "1- Less happy", "2" = "2", "3" = "3", "4" = "4", "5" = "5", "6" = "6","7" = "7- More happy")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1- Less happy 7 2.33
2 6 2.00
3 17 5.67
4 39 13.00
5 88 29.33
6 100 33.33
7- More happy 43 14.33

Some people are generally very happy. They enjoy life regardless of what is going on, getting the most out of everything. To what extent does this characterization describe you?

#gwb_c

var_name <- w2$gwb_c
w2$var_name_f <- recode_factor(var_name, "1" = "1- Not at all", "2" = "2", "3" = "3", "4" = "4", "5" = "5", "6" = "6","7" = "7- A great deal")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1- Not at all 11 3.67
2 14 4.67
3 19 6.33
4 46 15.33
5 68 22.67
6 92 30.67
7- A great deal 50 16.67

Some people are generally not very happy. Although they are not depressed, they never seem as happy as they might be. To what extent does this characterization describe you?

#gwb_d
var_name <- w2$gwb_d
w2$var_name_f <- recode_factor(var_name, "1" = "1- Not at all", "2" = "2", "3" = "3", "4" = "4", "5" = "5", "6" = "6", "7" = "7- A great deal")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
1- Not at all 103 34.33
2 65 21.67
3 41 13.67
4 32 10.67
5 30 10.00
6 18 6.00
7- A great deal 11 3.67

The next questions are about how you feel about different aspects of your life. For each one, tell us how often you feel that way.

a. How often do you feel that you lack companionship?

#loneliness_a
var_name <- w2$loneliness_a
w2$var_name_f <- recode_factor(var_name, "1" = "Hardly ever", "2" = "Some of the time", "3" = "Often")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Hardly ever 163 54.33
Some of the time 98 32.67
Often 39 13.00

b. How often do you feel left out?

var_name <- w2$loneliness_b
w2$var_name_f <- recode_factor(var_name, "1" = "Hardly ever", "2" = "Some of the time", "3" = "Often")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Hardly ever 164 54.67
Some of the time 109 36.33
Often 27 9.00

c. How often do you feel isolated from others?

#loneliness_c
var_name <- w2$loneliness_c
w2$var_name_f <- recode_factor(var_name, "1" = "Hardly ever", "2" = "Some of the time", "3" = "Often")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Hardly ever 148 49.33
Some of the time 112 37.33
Often 40 13.33

Section 5: Social Participation

How would you describe your sense of belonging to your local community? Would you say it is:

var_name <- w2$belonging
w2$var_name_f <- recode_factor(var_name, "1" = "Very strong", "2" = "Somewhat strong", "3" = "Somewhat weak", "4" = "Very weak", "77" ="I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very strong 39 13.00
Somewhat strong 130 43.33
Somewhat weak 86 28.67
Very weak 42 14.00
I don’t know 3 1.00

How often do you.

a. Say hello to a neighbour?

#spat_a

#per week
ggplot(w2, aes(x = w2$spat_a/52.1429)) + 
  geom_histogram(binwidth = 1, na.rm = TRUE, fill="#1596FF") + xlab("Times per week") + facet_wrap( ~ compare)

summary(w2$spat_a/52.1429)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.995   3.989   3.920   6.981   7.000

b. Stop and have a chat with a neighbour?

#spat_b

#per week
ggplot(w2, aes(x = w2$spat_b/52.1429)) + 
  geom_histogram(binwidth = 1, na.rm = TRUE, fill="#1596FF") + xlab("Times per week")+ facet_wrap( ~ compare)

summary(w2$spat_b/52.1429)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.4603  0.9973  2.2027  3.9890  6.9808

c. Visit a neighbour, or receive a visit from a neighbour?

#spat_c

#per week
ggplot(w2, aes(x = w2$spat_c/52.1429)) + 
  geom_histogram(binwidth = 1, na.rm = TRUE, fill="#1596FF") + xlab("Times per week")+ facet_wrap( ~ compare)

summary(w2$spat_c/52.1429)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.01918 0.62808 0.92055 6.98082

d. Go somewhere (e.g., to a shop; to a restaurant), together with a neighbour?

#spat_d

#per week
ggplot(w2, aes(x = w2$spat_d/52.1429)) + 
  geom_histogram(binwidth = 1, na.rm = TRUE, fill="#1596FF") + xlab("Times per week")+ facet_wrap( ~ compare)

summary(w2$spat_d/52.1429)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00000 0.00000 0.00000 0.32015 0.07671 6.98082

e. Ask help/advice from or do you help/give advice to a neighbour yourself?

#spat_e

#per week
ggplot(w2, aes(x = w2$spat_e/52.1429)) + 
  geom_histogram(binwidth = 1, na.rm = TRUE, fill="#1596FF") + xlab("Times per week")+ facet_wrap( ~ compare)

summary(w2$spat_e/52.1429)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.2301  0.6105  0.9205  6.9808

Thinking about your neighbourhood, how would you rate the following statements?

a. This is a close-knit neighbourhood

# plot spat2_a

var_name <- w2$spat2_a
w2$var_name_f <- recode_factor(var_name, "1"="Strongly disagree", "2"="Somewhat disagree", "3"="Neither agree or disagree", "4"="Somewhat agree", "5"= "Strongly agree")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTPalette3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly disagree 41 13.67
Somewhat disagree 42 14.00
Neither agree or disagree 117 39.00
Somewhat agree 78 26.00
Strongly agree 22 7.33

b. People generally do not get along

# plot spat2_b
var_name <- w2$spat2_b
w2$var_name_f <- recode_factor(var_name, "1"="Strongly disagree", "2"="Somewhat disagree", "3"="Neither agree or disagree", "4"="Somewhat agree", "5"= "Strongly agree")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTPalette3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly disagree 108 36.00
Somewhat disagree 96 32.00
Neither agree or disagree 72 24.00
Somewhat agree 20 6.67
Strongly agree 4 1.33

c. People are willing to help neighbours

# plot spat2_c
var_name <- w2$spat2_c
w2$var_name_f <- recode_factor(var_name, "1"="Strongly disagree", "2"="Somewhat disagree", "3"="Neither agree or disagree", "4"="Somewhat agree", "5"= "Strongly agree")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTPalette3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly disagree 9 3.00
Somewhat disagree 22 7.33
Neither agree or disagree 71 23.67
Somewhat agree 143 47.67
Strongly agree 55 18.33

d. People do not share same values

var_name <- w2$spat2_d
w2$var_name_f <- recode_factor(var_name, "1"="Strongly disagree", "2"="Somewhat disagree", "3"="Neither agree or disagree", "4"="Somewhat agree", "5"= "Strongly agree")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTPalette3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly disagree 47 15.67
Somewhat disagree 81 27.00
Neither agree or disagree 129 43.00
Somewhat agree 35 11.67
Strongly agree 8 2.67

e. People can be trusted

# plot spat2_e

var_name <- w2$spat2_e
w2$var_name_f <- recode_factor(var_name, "1"="Strongly disagree", "2"="Somewhat disagree", "3"="Neither agree or disagree", "4"="Somewhat agree", "5"= "Strongly agree")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTPalette3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly disagree 5 1.67
Somewhat disagree 20 6.67
Neither agree or disagree 63 21.00
Somewhat agree 143 47.67
Strongly agree 69 23.00

If you lost a wallet or purse that contained two hundred dollars, how likely is it to be returned with the money in it, if it was found:

a. By someone who lives close by? Would it be:

#spat3_a
var_name <- w2$spat3_a
w2$var_name_f <- recode_factor(var_name, "1"="Very likely", "2"="Somewhat likely", "3"="Not at all likely", "77"="I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very likely 127 42.33
Somewhat likely 123 41.00
Not at all likely 16 5.33
I don’t know 34 11.33

b. By a complete stranger? Would it be:

#spat3_b
var_name <- w2$spat3_b
w2$var_name_f <- recode_factor(var_name, "1"="Very likely", "2"="Somewhat likely", "3"="Not at all likely", "77"="I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very likely 14 4.67
Somewhat likely 128 42.67
Not at all likely 97 32.33
I don’t know 61 20.33

How many close friends do you have (that is, people who are not your relatives, but who you feel at ease with, can talk to about what is on your mind, or call on for help)?

#confide

ggplot(w2, aes(x = w2$confide)) + 
  geom_histogram(binwidth = 1, na.rm = TRUE, fill="#1596FF") + xlab("Times per week")+ facet_wrap( ~ compare)

summary(w2$confide)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   3.000   5.000   7.363  10.000  50.000

Here are some questions about your satisfaction with the neighbourhood in which you live. Please indicate your satisfaction with each item.How satisfied are you with…

a. your neighbourhood as a good place to live?

#neighb_a

var_name <- w2$neighb_a
w2$var_name_f <- recode_factor(var_name, "1" = "Strongly satisfied", "2" = "Satisfied", "3" = "Neither satisfied nor dissatisfied", "4" = "Dissatisfied", "5" = "Strongly dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly satisfied 171 57.00
Satisfied 108 36.00
Neither satisfied nor dissatisfied 10 3.33
Dissatisfied 10 3.33
Strongly dissatisfied 1 0.33

b. the number of people you know in your neighbourhood?

#neighb_b
var_name <- w2$neighb_b
w2$var_name_f <- recode_factor(var_name, "1" = "Strongly satisfied", "2" = "Satisfied", "3" = "Neither satisfied nor dissatisfied", "4" = "Dissatisfied", "5" = "Strongly dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly satisfied 45 15.00
Satisfied 107 35.67
Neither satisfied nor dissatisfied 88 29.33
Dissatisfied 48 16.00
Strongly dissatisfied 12 4.00

c. the ethnic diversity of your neighbourhood?

#neighb_c
var_name <- w2$neighb_c
w2$var_name_f <- recode_factor(var_name, "1" = "Strongly satisfied", "2" = "Satisfied", "3" = "Neither satisfied nor dissatisfied", "4" = "Dissatisfied", "5" = "Strongly dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly satisfied 39 13.00
Satisfied 105 35.00
Neither satisfied nor dissatisfied 105 35.00
Dissatisfied 38 12.67
Strongly dissatisfied 13 4.33

d. your neighbourhood as a good place to raise children

#neighb_d

var_name <- w2$neighb_d
w2$var_name_f <- recode_factor(var_name, "1" = "Strongly satisfied", "2" = "Satisfied", "3" = "Neither satisfied nor dissatisfied", "4" = "Dissatisfied", "5" = "Strongly dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Strongly satisfied 98 32.67
Satisfied 116 38.67
Neither satisfied nor dissatisfied 61 20.33
Dissatisfied 16 5.33
Strongly dissatisfied 9 3.00

Section 7: Neighbourhood Selection

Before moving into your current dwelling, when you were looking for a neighbourhood to live in, to what extent were the following characteristics important? Please report your perspectives, even if the neighbourhood where you currently live does not have these characteristics

a. Good access to public transportation

#neigh_pref_a

var_name <- w2$neigh_pref_a
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 155 51.67
Somewhat important 100 33.33
Not very important 28 9.33
Not important at all 13 4.33
I don’t know 4 1.33

b. Sufficient parks and green spaces

var_name <- w2$neigh_pref_b
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 179 59.67
Somewhat important 99 33.00
Not very important 15 5.00
Not important at all 3 1.00
I don’t know 4 1.33

c. Sufficient shops and services

#neigh_pref_c
var_name <- w2$neigh_pref_c
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 172 57.33
Somewhat important 111 37.00
Not very important 13 4.33
Not important at all 2 0.67
I don’t know 2 0.67

d. Proximity to doctors, a pharmacy or other health services

var_name <- w2$neigh_pref_d
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 71 23.67
Somewhat important 124 41.33
Not very important 76 25.33
Not important at all 27 9.00
I don’t know 2 0.67

e. A good knowledge of the neighbourhood

var_name <- w2$neigh_pref_e
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 62 20.67
Somewhat important 142 47.33
Not very important 70 23.33
Not important at all 17 5.67
I don’t know 9 3.00

f. Presence of relatives, friends or acquaintances

#neigh_pref_f

var_name <- w2$neigh_pref_f
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 34 11.33
Somewhat important 87 29.00
Not very important 102 34.00
Not important at all 70 23.33
I don’t know 7 2.33

g. A neighbourhood where it is pleasant to walk

#neigh_pref_g
var_name <- w2$neigh_pref_g
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 190 63.33
Somewhat important 91 30.33
Not very important 12 4.00
Not important at all 4 1.33
I don’t know 3 1.00

h. A neighbourhood where it is practical to move around by car (ease of parking, low traffic, good access by car)

#neigh_pref_h
var_name <- w2$neigh_pref_h
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 61 20.33
Somewhat important 102 34.00
Not very important 73 24.33
Not important at all 57 19.00
I don’t know 7 2.33

i. Presence of good schools

#neigh_pref_i
var_name <- w2$neigh_pref_i
w2$var_name_f <- recode_factor(var_name, "1" = "Very important", "2" = "Somewhat important", "3" = "Not very important", "4" = "Not important at all", "77" = "I don't know")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very important 69 23.00
Somewhat important 64 21.33
Not very important 45 15.00
Not important at all 102 34.00
I don’t know 20 6.67

Section 8: COVID-19 - most closed phase

The following questions are about your activities and how you felt during the most closed phase of the COVID-19 lockdown.

During the most closed phase of the COVID-19 lockdown, compared to your typical habits prior to the COVID-19 pandemic, how many trips per week did you make?

#cov_con_trips

ggplot(w2, aes(x= cov_con_trips)) + geom_bar(na.rm = TRUE,fill="#76D24A", binwidth = 1) + xlab("Number of trips per week") + facet_wrap( ~ compare)

summary(w2$cov_con_trips)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   3.000   4.513   6.000  40.000

During the most closed phase of the COVID-19 lockdown, did you make trips for the following activities?

t_1 <- select(w2, compare, cov_con_triptype_a, cov_con_triptype_b, cov_con_triptype_c, cov_con_triptype_d, cov_con_triptype_e, cov_con_triptype_f)
t_1 <- pivot_longer(t_1,
   cols = starts_with("cov_con_triptype_"),
   names_to = "perception",
   names_prefix = "cov_con_triptype_",
   values_to = "values",
   values_drop_na = TRUE)
## rename 

t_1$perception[t_1$perception== "a"] <- "Work"
t_1$perception[t_1$perception== "b"] <- "School"
t_1$perception[t_1$perception== "c"] <- "Groceries"
t_1$perception[t_1$perception== "d"] <- "Medical trips"
t_1$perception[t_1$perception== "e"] <- "Care-taking"
t_1$perception[t_1$perception== "f"] <- "Social, entertainment, eating out"
t_1$perception[t_1$perception== "g"] <- "Recreation / exercise"


## recode

t_1$values <- recode_factor(t_1$values, "1" = "Yes", "2" = "No")
##### Table
t_1<- t_1 %>% 
  group_by(compare, perception, values) %>% 
  dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x= perception, y= pct, fill= values)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
     coord_flip() +
  scale_fill_manual(values = INTERACTPaletteYN) +
      ylab("Percent") +
      xlab("Response") + 
    facet_wrap(~ compare)
  plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare perception values n pct
Care-taking Yes 32 10.67
Care-taking No 268 89.33
Groceries Yes 274 91.33
Groceries No 26 8.67
Medical trips Yes 108 36.00
Medical trips No 192 64.00
School Yes 9 3.00
School No 291 97.00
Social, entertainment, eating out Yes 43 14.33
Social, entertainment, eating out No 257 85.67
Work Yes 73 24.33
Work No 227 75.67

During the most closed phase of the COVID-19 lockdown, did you use the following modes of transportation in a typical week more than, less than,or the same as you did prior to the COVID-19 pandemic?

t_1 <- select(w2, compare, cov_con_mode_a, cov_con_mode_b, cov_con_mode_c, cov_con_mode_d)
t_1 <- pivot_longer(t_1,
   cols = starts_with("cov_con_mode_"),
   names_to = "perception",
   names_prefix = "cov_con_mode_",
   values_to = "values",
   values_drop_na = TRUE)
## rename 

t_1$perception[t_1$perception== "a"] <- "Driving"
t_1$perception[t_1$perception== "b"] <- "Cycling"
t_1$perception[t_1$perception== "c"] <- "Walking"
t_1$perception[t_1$perception== "d"] <- "Public Transit"


## recode

t_1$values <- recode_factor(t_1$values, "1" = "Less", "2" = "Same as before COVID-19", "3" = "More")
##### Table
t_1<- t_1 %>% 
  group_by(compare, perception, values) %>% 
  dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x= perception, y= pct, fill= values)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
     coord_flip() +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
      ylab("Percent") +
      xlab("Response") + 
    facet_wrap(~ compare)
  plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare perception values n pct
Cycling Less 110 36.67
Cycling Same as before COVID-19 130 43.33
Cycling More 60 20.00
Driving Less 179 59.67
Driving Same as before COVID-19 71 23.67
Driving More 50 16.67
Public Transit Less 250 83.33
Public Transit Same as before COVID-19 47 15.67
Public Transit More 3 1.00
Walking Less 59 19.67
Walking Same as before COVID-19 94 31.33
Walking More 147 49.00

During the most closed phase of the COVID-19 lockdown, were you using the Arbutus Greenway less than, more than, or the same as you did prior to the COVID-19 pandemic?

#cov_con_aag

var_name <- w2$cov_con_aag
w2$var_name_f <- recode_factor(var_name, "1" = "Less", "2" = "Same as before COVID-19", "3" = "More")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Less 106 35.33
Same as before COVID-19 124 41.33
More 70 23.33

Please select all the reasons explaining why you used the Arbutus Greenway more during the most closed phase of the COVID-19 lockdown.

*Participants could choose many options. Count is number of times option was selected.

#cov_con_aag_more
# 1 Staying active
# 2 To meet up with people at a distance
# 3 Felt safe despite COVID-19
# 4 Nearby walking destination
# 5 Felt safe from traffic
# 99    Other (please specify)

cov_con_aag_more_1 <- as.numeric(table(w2$cov_con_aag_more_1[w2$cov_con_aag_more_1==1]))
cov_con_aag_more_2 <- as.numeric(table(w2$cov_con_aag_more_2[w2$cov_con_aag_more_2==1]))
cov_con_aag_more_3 <- as.numeric(table(w2$cov_con_aag_more_3[w2$cov_con_aag_more_3==1]))
cov_con_aag_more_4 <- as.numeric(table(w2$cov_con_aag_more_4[w2$cov_con_aag_more_4==1]))
cov_con_aag_more_5 <- as.numeric(table(w2$cov_con_aag_more_5[w2$cov_con_aag_more_5==1]))


cov_con_aag_more <- data.frame(Response = c("Staying active", "To meet up with people at a distance", "Felt safe despite COVID-19", "Nearby walking destination", "Felt safe from traffic"), 
                               Frequence = c(cov_con_aag_more_1, cov_con_aag_more_2, cov_con_aag_more_3, cov_con_aag_more_4, cov_con_aag_more_5))

 
kable(cov_con_aag_more) %>%  kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Response Frequence
Staying active 66
To meet up with people at a distance 17
Felt safe despite COVID-19 42
Nearby walking destination 49
Felt safe from traffic 37

Please select all the reasons explaining why you used the Arbutus Greenway less during the most closed phase of the COVID-19 lockdown.

*Participants could choose many options. Count is number of times option was selected.

#cov_con_aag_more
# 1 Used other outdoor spaces instead
# 2 Too crowded
# 3 Didn’t feel safe because of COVID-19
# 4 Too far away
# 5 Didn’t feel safe from traffic
# 6 Other

cov_con_aag_less_1 <- as.numeric(table(w2$cov_con_aag_less_1[w2$cov_con_aag_less_1==1]))
cov_con_aag_less_2 <- as.numeric(table(w2$cov_con_aag_less_2[w2$cov_con_aag_less_2==1]))
cov_con_aag_less_3 <- as.numeric(table(w2$cov_con_aag_less_3[w2$cov_con_aag_less_3==1]))
cov_con_aag_less_4 <- as.numeric(table(w2$cov_con_aag_less_4[w2$cov_con_aag_less_4==1]))
cov_con_aag_less_5 <- as.numeric(table(w2$cov_con_aag_less_5[w2$cov_con_aag_less_5==1]))



cov_con_aag_less <- data.frame(Response = c("Used other outdoor spaces instead", 
                                            "Too crowded", 
                                            "Didn’t feel safe because of COVID-19", 
                                            "Too far away", 
                                            "Didn’t feel safe from traffic"), 
                               Frequence = c(cov_con_aag_less_1, 
                                             cov_con_aag_less_2, 
                                             cov_con_aag_less_3, 
                                             cov_con_aag_less_4, 
                                             cov_con_aag_less_5))
 
kable(cov_con_aag_less) %>%  kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Response Frequence
Used other outdoor spaces instead 42
Too crowded 51
Didn’t feel safe because of COVID-19 41
Too far away 12
Didn’t feel safe from traffic 1

During the most closed phase of the COVID-19 lockdown, how satisfied were you with your level of physical activity?

var_name <- w2$cov_con_pa
w2$var_name_f <- recode_factor(var_name, "1" = "Very satisfied", 
                                                "2" = "Somewhat satisfied", 
                                                "3" = "Neutral", 
                                                "4" = "Somewhat dissatisfied", 
                                                "5" = "Very dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very satisfied 64 21.33
Somewhat satisfied 92 30.67
Neutral 15 5.00
Somewhat dissatisfied 83 27.67
Very dissatisfied 46 15.33

During the most closed phase of the COVID-19 lockdown, how satisfied were you with your ability to connect with others?

var_name <- w2$cov_con_social
w2$var_name_f <- recode_factor(var_name, "1" = "Very satisfied", 
                                                "2" = "Somewhat satisfied", 
                                                "3" = "Neutral", 
                                                "4" = "Somewhat dissatisfied", 
                                                "5" = "Very dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very satisfied 18 6.00
Somewhat satisfied 71 23.67
Neutral 34 11.33
Somewhat dissatisfied 121 40.33
Very dissatisfied 56 18.67

During the most closed phase of the COVID-19 lockdown, how would you have rated your overall well-being?

var_name <- w2$cov_con_wb

w2$var_name_f <- recode_factor(var_name, "0" = "0. As bad as it could be", 
                                                "1" = "1",
                                                "2" = "2", 
                                                "3" = "3", 
                                                "4" = "4", 
                                                "5" = "5", 
                                                "6" = "6", 
                                                "7" = "7",
                                                "8" = "8",
                                                "9" = "9",
                                                "10" = "10. As good as it could be")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTfade)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
  1. As bad as it could be
4 1.33
1 1 0.33
2 12 4.00
3 25 8.33
4 23 7.67
5 42 14.00
6 30 10.00
7 47 15.67
8 46 15.33
9 35 11.67
  1. As good as it could be
35 11.67

Section 9: COVID-19 Current context

The following questions are about your activities and how you feel now in the current context.

In the current context, how many trips do you make per week?

#cov_decon_trips

ggplot(w2, aes(x= cov_decon_trips)) + geom_bar(na.rm = TRUE,fill="#76D24A", binwidth = 1) + xlab("Number of trips per week") + facet_wrap( ~ compare)

summary(w2$cov_decon_trips)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    4.00    7.00    8.73   12.00   40.00

In the current context, do you make trips for the following activities?

t_1 <- select(w2, compare, cov_decon_triptype_a, cov_decon_triptype_b, cov_decon_triptype_c, cov_decon_triptype_d, cov_decon_triptype_e, cov_decon_triptype_f)
t_1 <- pivot_longer(t_1,
   cols = starts_with("cov_decon_triptype_"),
   names_to = "perception",
   names_prefix = "cov_decon_triptype_",
   values_to = "values",
   values_drop_na = TRUE)
## rename 

t_1$perception[t_1$perception== "a"] <- "Work"
t_1$perception[t_1$perception== "b"] <- "School"
t_1$perception[t_1$perception== "c"] <- "Groceries"
t_1$perception[t_1$perception== "d"] <- "Medical trips"
t_1$perception[t_1$perception== "e"] <- "Care-taking"
t_1$perception[t_1$perception== "f"] <- "Social, entertainment, eating out"
t_1$perception[t_1$perception== "g"] <- "Recreation / exercise"


## recode

t_1$values <- recode_factor(t_1$values, "1" = "Yes", "2" = "No")
##### Table
t_1<- t_1 %>% 
  group_by(compare, perception, values) %>% 
  dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x= perception, y= pct, fill= values)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
     coord_flip() +
  scale_fill_manual(values = INTERACTPaletteYN) +
      ylab("Percent") +
      xlab("Response") + 
    facet_wrap(~ compare)
  plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare perception values n pct
Care-taking Yes 40 13.33
Care-taking No 260 86.67
Groceries Yes 287 95.67
Groceries No 13 4.33
Medical trips Yes 173 57.67
Medical trips No 127 42.33
School Yes 28 9.33
School No 272 90.67
Social, entertainment, eating out Yes 151 50.33
Social, entertainment, eating out No 149 49.67
Work Yes 104 34.67
Work No 196 65.33

In the current context, do you use the following modes of transportation less than, more than, or the same as you did prior to the COVID-19 pandemic?

t_1 <- select(w2, compare, cov_decon_mode_a, cov_decon_mode_b, cov_decon_mode_c, cov_decon_mode_d)
t_1 <- pivot_longer(t_1,
   cols = starts_with("cov_decon_mode_"),
   names_to = "perception",
   names_prefix = "cov_decon_mode_",
   values_to = "values",
   values_drop_na = TRUE)
## rename 

t_1$perception[t_1$perception== "a"] <- "Driving"
t_1$perception[t_1$perception== "b"] <- "Cycling"
t_1$perception[t_1$perception== "c"] <- "Walking"
t_1$perception[t_1$perception== "d"] <- "Public Transit"


## recode

t_1$values <- recode_factor(t_1$values, "1" = "Less", "2" = "Same as before COVID-19", "3" = "More")
##### Table
t_1<- t_1 %>% 
  group_by(compare, perception, values) %>% 
  dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x= perception, y= pct, fill= values)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
     coord_flip() +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
      ylab("Percent") +
      xlab("Response") + 
    facet_wrap(~ compare)
  plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare perception values n pct
Cycling Less 75 25.00
Cycling Same as before COVID-19 173 57.67
Cycling More 52 17.33
Driving Less 130 43.33
Driving Same as before COVID-19 109 36.33
Driving More 61 20.33
Public Transit Less 229 76.33
Public Transit Same as before COVID-19 66 22.00
Public Transit More 5 1.67
Walking Less 42 14.00
Walking Same as before COVID-19 119 39.67
Walking More 139 46.33

In the current context, have you been using the Arbutus Greenway less than, more than, or the same as you did prior to the COVID-19 pandemic?

#cov_decon_aag

var_name <- w2$cov_decon_aag
w2$var_name_f <- recode_factor(var_name, "1" = "Less", "2" = "Same as before COVID-19", "3" = "More")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTshorterfade3)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Less 88 29.33
Same as before COVID-19 139 46.33
More 73 24.33

Please select all the reasons explaining why you use the Arbutus Greenway more now than prior to the COVID-19 pandemic.

*Participants could choose many options. Count is number of times option was selected.

# 1 Staying active
# 2 To meet up with people at a distance
# 3 Felt safe despite COVID-19
# 4 Nearby walking destination
# 5 Felt safe from traffic
# 99    Other (please specify)

cov_decon_aag_more_1 <- as.numeric(table(w2$cov_decon_aag_more_1[w2$cov_decon_aag_more_1==1]))
cov_decon_aag_more_2 <- as.numeric(table(w2$cov_decon_aag_more_2[w2$cov_decon_aag_more_2==1]))
cov_decon_aag_more_3 <- as.numeric(table(w2$cov_decon_aag_more_3[w2$cov_decon_aag_more_3==1]))
cov_decon_aag_more_4 <- as.numeric(table(w2$cov_decon_aag_more_4[w2$cov_decon_aag_more_4==1]))
cov_decon_aag_more_5 <- as.numeric(table(w2$cov_decon_aag_more_5[w2$cov_decon_aag_more_5==1]))


cov_decon_aag_more <- data.frame(Response = c("Staying active", "To meet up with people at a distance", "Felt safe despite COVID-19", "Nearby walking destination", "Felt safe from traffic"), 
                               Frequence = c(cov_decon_aag_more_1, cov_decon_aag_more_2, cov_decon_aag_more_3, cov_decon_aag_more_4, cov_decon_aag_more_5))

 
kable(cov_decon_aag_more) %>%  kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Response Frequence
Staying active 67
To meet up with people at a distance 22
Felt safe despite COVID-19 34
Nearby walking destination 51
Felt safe from traffic 35

Please select all the reasons explaining why you use the Arbutus Greenway less now than prior to the COVID-19 pandemic.

*Participants could choose many options. Count is number of times option was selected.

cov_decon_aag_less_1 <- as.numeric(table(w2$cov_decon_aag_less_1[w2$cov_decon_aag_less_1==1]))
cov_decon_aag_less_2 <- as.numeric(table(w2$cov_decon_aag_less_2[w2$cov_decon_aag_less_2==1]))
cov_decon_aag_less_3 <- as.numeric(table(w2$cov_decon_aag_less_3[w2$cov_decon_aag_less_3==1]))
cov_decon_aag_less_4 <- as.numeric(table(w2$cov_decon_aag_less_4[w2$cov_decon_aag_less_4==1]))
cov_decon_aag_less_5 <- as.numeric(table(w2$cov_decon_aag_less_5[w2$cov_decon_aag_less_5==1]))



cov_decon_aag_less <- data.frame(Response = c("Used other outdoor spaces instead", 
                                            "Too crowded", 
                                            "Didn’t feel safe because of COVID-19", 
                                            "Too far away", 
                                            "Didn’t feel safe from traffic"), 
                               Frequence = c(cov_decon_aag_less_1, 
                                             cov_decon_aag_less_2, 
                                             cov_decon_aag_less_3, 
                                             cov_decon_aag_less_4, 
                                             cov_decon_aag_less_5))
 
kable(cov_decon_aag_less) %>%  kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Response Frequence
Used other outdoor spaces instead 37
Too crowded 39
Didn’t feel safe because of COVID-19 27
Too far away 12
Didn’t feel safe from traffic 3

In the current context, how satisfied are you with your level of physical activity?

var_name <- w2$cov_decon_pa
w2$var_name_f <- recode_factor(var_name, "1" = "Very satisfied", 
                                                "2" = "Somewhat satisfied", 
                                                "3" = "Neutral", 
                                                "4" = "Somewhat dissatisfied", 
                                                "5" = "Very dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very satisfied 63 21.00
Somewhat satisfied 125 41.67
Neutral 18 6.00
Somewhat dissatisfied 66 22.00
Very dissatisfied 28 9.33

In the current context, how satisfied are you with your ability to connect with others?

var_name <- w2$cov_decon_social
w2$var_name_f <- recode_factor(var_name, "1" = "Very satisfied", 
                                                "2" = "Somewhat satisfied", 
                                                "3" = "Neutral", 
                                                "4" = "Somewhat dissatisfied", 
                                                "5" = "Very dissatisfied")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalette3) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very satisfied 27 9.00
Somewhat satisfied 92 30.67
Neutral 45 15.00
Somewhat dissatisfied 109 36.33
Very dissatisfied 27 9.00

In the current context, how would you rate your overall well-being?

var_name <- w2$cov_decon_wb

w2$var_name_f <- recode_factor(var_name, "0" = "0. As bad as it could be", 
                                                "1" = "1",
                                                "2" = "2", 
                                                "3" = "3", 
                                                "4" = "4", 
                                                "5" = "5", 
                                                "6" = "6", 
                                                "7" = "7",
                                                "8" = "8",
                                                "9" = "9",
                                                "10" = "10. As good as it could be")
var_name_f <- w2$var_name_f

t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTfade)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
  1. As bad as it could be
2 0.67
1 2 0.67
2 5 1.67
3 14 4.67
4 19 6.33
5 29 9.67
6 37 12.33
7 54 18.00
8 65 21.67
9 35 11.67
  1. As good as it could be
38 12.67

Section 10: Demographics

What is your current gender identity?

#gender 
var_name <- w2$gender

w2$var_name_f <- recode_factor(var_name, "1"="Man",
                                                "2"="Woman",
                                                "3"="Trans man", 
                                                "4"="Trans woman", 
                                                "5"="Genderqueer/Gender non-conforming", 
                                                "6"="Different identity")

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Man 97 32.33
Woman 199 66.33
Genderqueer/Gender non-conforming 3 1.00
Different identity 1 0.33

What sex were you assigned at birth?

*Asked only to new participants

# Sex

var_name <- w2$sex
w2$var_name_f <- recode_factor(var_name, "1"="Male",
                                                "2"="Female",
                                                "3"="Other")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Male 94 31.33
Female 201 67.00
Other 1 0.33
NA 4 1.33

What is your marital status? Are you…

#marital_status

var_name <- w2$marital_status
w2$var_name_f <- recode_factor(var_name, "1" = "Single", "2" = "Married/commonlaw", "3" = "Separated/divorced", "4" = "Widowed")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Single 64 21.33
Married/commonlaw 189 63.00
Separated/divorced 36 12.00
Widowed 11 3.67

Do you have children?

#children

var_name <- w2$children
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 166 55.33
No 134 44.67

How many children do you have?

#living_children

w2$living_children[w2$living_children==-7] <- NA
ggplot(w2, aes(x= living_children)) + geom_bar(na.rm = TRUE,fill="#76D24A", binwidth = 1) + xlab("Number of children") + facet_grid(~ compare)

summary(w2$living_children)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   1.000   2.000   2.000   2.157   3.000   6.000     134

What is your current living arrangement? Do you live

Participants could choose multiple answers

#living_arrange  

w2$living_arrange_1[w2$living_arrange_1==-7] <- NA

var_name <- w2$living_arrange_1
w2$var_name_f <- recode_factor(var_name, "1" = "Alone", "0" = "With other people")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Alone 84 28
With other people 216 72
# Create a vector with variable names
response = paste0("living_arrange_", 2:7)

# Empty vector to stor output
living_arrange_prop <- c()

# Calculate univariate proportions
for(i in response){
  living_arrange_prop[i] <- sum(w2[,i]) / nrow(w2)
}

# Transform
living_arrange_prop <- as.data.frame(living_arrange_prop)
living_arrange_prop$Response <- c("With a spouse (or partner)","With children","With grandchildren","With relatives or siblings?", "With friends", "With other people")

living_arrange_prop$plot<- factor(living_arrange_prop$Response, living_arrange_prop$Response)

ggplot(living_arrange_prop, aes(x = plot, y = living_arrange_prop)) + geom_bar(stat = "identity", fill = "#76D24A") + xlab("") + ylab("Percentage of participants who selected this answer") + theme(axis.text.x  = element_text(size=12, angle=0, vjust=.6)) + scale_x_discrete(labels = function(plot) str_wrap(plot, width = 10)) 

living_arrange_prop$living_arrange_prop <- round(living_arrange_prop$living_arrange_prop*100,2)

living_arrange_prop <- setcolorder(living_arrange_prop, c("Response", "living_arrange_prop"))

colnames(living_arrange_prop) <- c("Response", "Percentage of participants who selected this answer")

living_arrange_prop <- living_arrange_prop[-c(3)]
kable(living_arrange_prop) %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")  
Response Percentage of participants who selected this answer
living_arrange_2 With a spouse (or partner) 63.67
living_arrange_3 With children 27.33
living_arrange_4 With grandchildren 0.67
living_arrange_5 With relatives or siblings? 3.00
living_arrange_6 With friends 2.67
living_arrange_7 With other people 2.67

How many children under the age of 16 live in your household?

#children_household

p <- ggplot(w2, aes(x = children_household)) + 
  geom_bar(na.rm = TRUE,fill="#76D24A", binwidth = 1) +
  xlab("Number of children under 16 in household") + 
  facet_wrap(~ compare)

plot(p)

summary(w2$children_household)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.2133  0.0000  3.0000

How many adults aged 16 or older live in your household including yourself?

ggplot(w2, aes(x= adults_household)) + geom_bar(na.rm = TRUE,fill="#76D24A", binwidth = 1) + xlab("Number of adults in household") + facet_wrap(~ compare)

summary(w2$adults_household)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   2.057   2.000  20.000

Thinking about where you live now, are you

*Note: Question only asked to new (n=106) and moved participants (n=17) at w2, reporting w1 data for returning participants

#house_tenure
w2$house_tenure[w2$house_tenure==-7] <- NA

var_name <- w2$house_tenure

w2$var_name_f <- recode_factor(var_name, "1" = "An owner", "2" = "A tenant", "3" = "Resident in a relative or friend's home", "4" = "Resident other than in a relative or friend's home", "5" = "Other", "6" = "I don't know")

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_grid(~compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
An owner 190 63.33
A tenant 90 30.00
Resident in a relative or friend’s home 6 2.00
Resident other than in a relative or friend’s home 1 0.33
Other 10 3.33
NA 3 1.00

In what type of dwelling do you currently live? Is it:

*Note: Question only asked to new (n=106) and moved participants (n=17) at w2, reporting w1 data for returning participants

#dwelling_type
w2$dwelling_type[w2$dwelling_type==-7] <- NA

var_name <- w2$dwelling_type

w2$var_name_f <- recode_factor(var_name, "1" = "Single detached house", "2" = "Semi-detached house", "3" = "Row house",  "4" = "An apartment (or condo) in a duplex or triplex", "5" = "Apartment (or condo) in building with fewer than 5 storeys", "6" = "Apartment (or condo) in building with more than 5 storeys", "7" = "Mobile home/movable dwelling", "8" = "Senior's home", "9" = "Other", "77" = "NA")

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response")+ 
  facet_grid(~compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Single detached house 101 33.67
Semi-detached house 12 4.00
Row house 16 5.33
An apartment (or condo) in a duplex or triplex 12 4.00
Apartment (or condo) in building with fewer than 5 storeys 101 33.67
Apartment (or condo) in building with more than 5 storeys 44 14.67
Senior’s home 1 0.33
Other 8 2.67
NA 2 0.67
NA 3 1.00

When did you move to your current residence?

*Note: Question only asked to new (n=106) and moved participants (n=17) at w2, reporting w1 data for returning participants

#residence
w2$residence[w2$residence==""] <- NA

residence <- as.integer(format(as.Date(w2$residence),"%Y"))
time <- 2021 - residence

ggplot(w2, aes(x = time)) + geom_histogram(na.rm=TRUE, binwidth = 1, fill="#76D24A") + xlab("Years since moving to current residence") + facet_grid(~compare)

summary(time)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    0.00    5.00   14.00   15.96   23.00   71.00       3

Were you born in Canada?

*Note: Question only asked to new participants at w2 (n=106), reporting w1 data for returning participants

#born_can
var_name <- w2$born_can
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 213 71.00
No 83 27.67
NA 4 1.33

When did you move to Canada?

*Note: Question only asked to new participants at w2 or(n=106), reporting w1 data for returning participants Question asked only to those not born in Canada (n=83)

#move_can 

w2$move_can[w2$move_can==-7] <- NA
ggplot(w2, aes(x = w2$move_can)) + geom_histogram (na.rm=TRUE, binwidth = 1, fill="#76D24A") + xlab("Year of move to Canada")

summary(w2$move_can)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    1948    1966    1980    1981    1998    2019     217

To which ethnic or cultural group(s) do you belong? (Check all that apply)

*Note: Question only asked to new participants at w2 or(n=106), reporting w1 data for returning participants

var_name <- w2$group
w2$var_name_f <- as.factor(var_name)
var_name_f <- w2$var_name_f


##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") + 
  facet_wrap(~compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Asian 24 8.00
Black 1 0.33
Caucasian 236 78.67
Latin American 5 1.67
Other 10 3.33
Mixed identity 13 4.33
NA 11 3.67

Which category best describes your annual household income, taking into account all sources of income?

#w2$income[w2$income==-7] <- NA

var_name <- w2$income 

w2$var_name_f <- recode_factor(var_name, "1" = "No income", "2" = "$1 to $9,999", "3" = "$10,000 to $14,999", "4" = "$15,000 to $19,999", "5" = "$20,000 to $29,999", "6" = "$30,000 to $39,999", "7" = "$40,000 to $49,999", "8" = "$50,000 to $99,999", "9" = "$100,000 to $149,999", "10" = " $150,000 to $199,999", "11" = "$200,000 or more", "77" = "Don't know/prefer no answer", "-7" = "NA")

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = rev(INTERACTfade)) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") + 
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
$1 to $9,999 1 0.33
$10,000 to $14,999 2 0.67
$15,000 to $19,999 5 1.67
$20,000 to $29,999 11 3.67
$30,000 to $39,999 10 3.33
$40,000 to $49,999 17 5.67
$50,000 to $99,999 68 22.67
$100,000 to $149,999 48 16.00
$150,000 to $199,999 36 12.00
$200,000 or more 50 16.67
Don’t know/prefer no answer 52 17.33

To what extent does this annual household income allow you to satisfy your household’s needs?

#income_needs

var_name <- w2$income_needs

w2$var_name_f <- recode_factor(var_name, "1" = "Very well", "2" = "Well", "3" = "Not so well", "4" = "Not at all", "77" = "Don't know/prefer no answer")

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTshortfade) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") + 
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Very well 154 51.33
Well 111 37.00
Not so well 29 9.67
Don’t know/prefer no answer 6 2.00

What are your houshold’s total monthly housing costs?

This includes rent payments, mortgage payments, property taxes, condominium fees, and utility payments, like heating, water and electricity. If you live with roommates, please only include your share of the housing costs.

#housing costs 

w2$housing_cost[w2$housing_cost==-7] <- NA

# ggplot(t_1, aes(x = housing_cost)) + geom_histogram (na.rm =TRUE, binwidth = 1, fill="#76D24A") + xlab ("Monthly housing costs") + facet_wrap(~ compare)

summary(w2$housing_cost)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##      75    1015    1805    3570    3000  200000      97

What is your highest education level?

#education

var_name <- w2$education

w2$var_name_f <- recode_factor(var_name, "1" = "Primary/Elementary school", "2" = "Secondary school", "3" = "Trade/Technical school or college diploma", "4" = "University degree", "5" = "Graduate degree", "77" ="I don't know/Prefer not to answer")

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") + 
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Secondary school 21 7.00
Trade/Technical school or college diploma 34 11.33
University degree 107 35.67
Graduate degree 137 45.67
I don’t know/Prefer not to answer 1 0.33

What is your current employment status?

#employment
var_name <- w2$employment

w2$var_name_f <- recode_factor(var_name, "1" = "Retired and not working", "2" = "Employed full-time", "3" = "Employed part-time", "4" = "Unemployed and looking for work", "5" = "Unemployed and not looking for work", "6" ="Other" )

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteSet) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") + 
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Retired and not working 91 30.33
Employed full-time 114 38.00
Employed part-time 46 15.33
Unemployed and looking for work 12 4.00
Unemployed and not looking for work 9 3.00
Other 28 9.33

How has the COVID-19 pandemic impacted your job?

w2$employment_covid_1[w2$employment_covid_1==0] <- 2
w2$employment_covid_2[w2$employment_covid_2==0] <- 2
w2$employment_covid_3[w2$employment_covid_3==0] <- 2
w2$employment_covid_4[w2$employment_covid_4==0] <- 2
w2$employment_covid_5[w2$employment_covid_5==0] <- 2
w2$employment_covid_6[w2$employment_covid_6==0] <- 2
w2$employment_covid_7[w2$employment_covid_7==0] <- 2
w2$employment_covid_8[w2$employment_covid_8==0] <- 2
w2$employment_covid_9[w2$employment_covid_9==0] <- 2
w2$employment_covid_10[w2$employment_covid_10==0] <- 2
w2$employment_covid_99[w2$employment_covid_99==0] <- 2

t_1 <- select(w2, compare, employment_covid_1,employment_covid_2, employment_covid_3, employment_covid_4, employment_covid_5, employment_covid_6, employment_covid_7, employment_covid_8, employment_covid_9, employment_covid_10)
t_1 <- pivot_longer(t_1,
   cols = starts_with("employment_covid_"),
   names_to = "feature",
   names_prefix = "employment_covid_",
   values_to = "values",
   values_drop_na = TRUE)

t_1$values <- recode_factor(t_1$values, "1" = "Yes", "2" = "No", "77" = "I don't know")


## rename 
t_1$feature[t_1$feature== "1"] <- "I work from home."
t_1$feature[t_1$feature== "2"] <- "I work partly from home, partly at my normal workplace"
t_1$feature[t_1$feature== "3"] <- "I continue to work at my normal place of work."
t_1$feature[t_1$feature== "4"] <- "My paid work #hours have been reduced."
t_1$feature[t_1$feature== "5"] <- "My hourly rate has been reduced"
t_1$feature[t_1$feature== "6"] <- "My paid work hours have increased" 
t_1$feature[t_1$feature== "7"] <- "My hourly rate has increased."
t_1$feature[t_1$feature== "8"] <- "My job has been deemed essential by the government."
t_1$feature[t_1$feature== "9"] <- "I lost my job"
t_1$feature[t_1$feature== "10"] <-"I have started a new job"


t_1<- t_1 %>% 
  group_by(compare, feature, values) %>% 
  dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))

p <- ggplot(t_1, aes(x= feature, y= pct, fill= values)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
  geom_bar(stat= "identity") +
     coord_flip() +
  scale_fill_manual(values = INTERACTPaletteYN) +
      ylab("Percent") +
      xlab("Response") + 
    facet_wrap(~ compare) + 
  scale_x_discrete(labels = function(feature) str_wrap(feature, width = 30)) 

plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare feature values n pct
I continue to work at my normal place of work. Yes 38 12.67
I continue to work at my normal place of work. No 262 87.33
I have started a new job Yes 5 1.67
I have started a new job No 295 98.33
I lost my job Yes 13 4.33
I lost my job No 287 95.67
I work from home. Yes 75 25.00
I work from home. No 225 75.00
I work partly from home, partly at my normal workplace Yes 46 15.33
I work partly from home, partly at my normal workplace No 254 84.67
My hourly rate has been reduced Yes 3 1.00
My hourly rate has been reduced No 297 99.00
My hourly rate has increased. Yes 6 2.00
My hourly rate has increased. No 294 98.00
My job has been deemed essential by the government. Yes 25 8.33
My job has been deemed essential by the government. No 275 91.67
My paid work #hours have been reduced. Yes 26 8.67
My paid work #hours have been reduced. No 274 91.33
My paid work hours have increased Yes 6 2.00
My paid work hours have increased No 294 98.00

Which of the following best describes your usual work schedule at your current job?

#shift 
w2$shift[w2$shift==-7] <- NA

var_name <- w2$shift

w2$var_name_f <- recode_factor(var_name, "1" = "A regular daytime schedule or shift.", "2" = "A regular evening shift   ", "3" = "A regular night shift", "4" = "A rotating shift, a split shift, or an irregular schedule", "5" = "On call or casual", "6" ="Other") 

var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=90, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPalettecont) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") + 
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
A regular daytime schedule or shift. 127 42.33
A regular evening shift 2 0.67
A rotating shift, a split shift, or an irregular schedule 18 6.00
On call or casual 8 2.67
Other 5 1.67
NA 140 46.67

Do you use a mobility aid when you walk?

#aid

var_name <- w2$aid
w2$var_name_f <- recode_factor(var_name, "1" = "Yes", "2" = "No")
var_name_f <- w2$var_name_f

##### Table
t_1 <- w2 %>%
          group_by(compare, var_name_f) %>%
            dplyr::summarise(n = n()) %>%
            dplyr:: mutate(pct = round(100*n/sum(n),2))


##### Figure
p <- ggplot(t_1, aes(x = var_name_f, y = pct,  fill = var_name_f)) + theme(axis.text.x = element_text(angle=0, vjust = .6)) + 
    geom_bar(stat= "identity") +
  scale_fill_manual(values = INTERACTPaletteYN) +
  guides(fill=FALSE) +
      ylab("Count") +
      xlab("Response") +
  facet_wrap(~ compare)
plot(p)

kable(t_1)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
compare var_name_f n pct
Yes 4 1.33
No 296 98.67
# 1 Cane
# 2 Walker
# 3 Scooter
# 4 Wheelchair
# 5 Other (Please specify)
# -7    Not applicable
# table(w2$aid_type_txt)


Type <- c("Cane", "Walker", "Guide dog", "Poles")
Count <- c("1", "1", "1", "2")

summaryaid_type <- data.frame(Type, Count)
kable(summaryaid_type)  %>%   kable_styling(bootstrap_options = "striped", full_width = T, position = "left") 
Type Count
Cane 1
Walker 1
Guide dog 1
Poles 2