Unlike the Eligibility or Health questionnaires, which can mostly be encoded as a flat table, the VERITAS questionnaire implicitly records a series of entities and their relationships:
The diagram below illustrates the various entities collected throught the VERITAS questionnaire:
New participants and returning participants are presented separately below, as they were presented two slightly different question flows.
home_location <- locations[locations$location_category == 1, ]
## version ggmap
vic_aoi <- st_bbox(home_location)
names(vic_aoi) <- c("left", "bottom", "right", "top")
vic_aoi[["left"]] <- vic_aoi[["left"]] - .07
vic_aoi[["right"]] <- vic_aoi[["right"]] + .07
vic_aoi[["top"]] <- vic_aoi[["top"]] + .01
vic_aoi[["bottom"]] <- vic_aoi[["bottom"]] - .01
bm <- get_stadiamap(vic_aoi, zoom = 11, maptype = "stamen_toner_lite") %>%
ggmap(extent = "device")
bm + geom_sf(data = st_jitter(home_location, .008), inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3) # see https://github.com/r-spatial/sf/issues/336
NB: Home locations have been randomly shifted from their original position to protect privacy.
# Number of participants by municipalites
home_by_municipalites <- st_join(home_location, municipalities["NAME"])
home_by_mun_cnt <- as.data.frame(home_by_municipalites) %>%
group_by(NAME) %>%
dplyr::count() %>%
arrange(desc(n), NAME)
home_by_mun_cnt$Shape <- NULL
kable(home_by_mun_cnt, caption = "Number of participants by municipalities") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
NAME | n |
---|---|
Victoria | 63 |
Saanich | 39 |
Esquimalt | 7 |
Oak Bay | 5 |
Colwood | 3 |
Langford | 3 |
View Royal | 3 |
Central Saanich | 2 |
New Songhees 1A | 1 |
# N of addresses by date of move
year_of_move <- veritas_main[c("interact_id", "home_move_date")]
year_of_move$home_move_date <- year(ymd(year_of_move$home_move_date))
ggplot(data = year_of_move) +
geom_histogram(aes(x = home_move_date))
# recode date of move
year_of_move$home_move_date_recode <- as.character(year_of_move$home_move_date)
year_of_move$home_move_date_recode[year_of_move$home_move_date <= 2005] <- "2005 - 2001"
year_of_move$home_move_date_recode[year_of_move$home_move_date <= 2000] <- "2000 - 1991"
year_of_move$home_move_date_recode[year_of_move$home_move_date <= 1990] <- paste("1990 -", min(year_of_move$home_move_date))
year_of_move_cnt <- year_of_move %>%
group_by(home_move_date_recode) %>%
dplyr::count() %>%
arrange(desc(home_move_date_recode))
kable(year_of_move_cnt, caption = "Year of move to current address") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
home_move_date_recode | n |
---|---|
2019 | 15 |
2018 | 26 |
2017 | 14 |
2016 | 10 |
2015 | 10 |
2014 | 5 |
2013 | 6 |
2012 | 3 |
2011 | 1 |
2010 | 2 |
2009 | 5 |
2008 | 4 |
2007 | 3 |
2006 | 1 |
2005 - 2001 | 7 |
2000 - 1991 | 11 |
1990 - 1965 | 3 |
prn <- poly_geom[poly_geom$area_type == "neighborhood", ]
## version ggmap
bm + geom_sf(data = prn, inherit.aes = FALSE, fill = alpha("blue", 0.05), color = alpha("blue", 0.3))
# Min, max, median & mean area of PRN
prn$area_m2 <- st_area(prn$geom)
kable(t(as.matrix(summary(prn$area_m2))),
caption = "Area (in square meters) of the perceived residential neighborhood",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
24435.5 | 574578.1 | 1122532 | 2156111 | 2270551 | 41824885 |
NB only 118 valid neighborhoods were collected, as many participants struggled to draw polygons on the map.
# extract and recode
.ngh_att <- veritas_main[veritas_main$neighbourhood_attach != 99, c("interact_id", "neighbourhood_attach")] %>% dplyr::rename(neighbourhood_attach_code = neighbourhood_attach)
.ngh_att$neighbourhood_attach <- factor(ifelse(.ngh_att$neighbourhood_attach_code == 1, "1 [Not attached at all]",
ifelse(.ngh_att$neighbourhood_attach_code == 6, "6 [Very attached]",
.ngh_att$neighbourhood_attach_code
)
))
# histogram of attachment
ggplot(data = .ngh_att) +
geom_histogram(aes(x = neighbourhood_attach), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "neighbourhood_attach")
.ngh_att_cnt <- .ngh_att %>%
group_by(neighbourhood_attach) %>%
dplyr::count() %>%
arrange(neighbourhood_attach)
kable(.ngh_att_cnt, caption = "Neigbourhood attachment") %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
neighbourhood_attach | n |
---|---|
1 [Not attached at all] | 5 |
2 | 9 |
3 | 10 |
4 | 32 |
5 | 35 |
6 [Very attached] | 32 |
# histogram of n hours out
ggplot(data = veritas_main) +
geom_histogram(aes(x = hours_out))
# Min, max, median & mean hours/day out
kable(t(as.matrix(summary(veritas_main$hours_out))),
caption = "Hours/day outside home",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
1 | 8 | 10 | 9 | 11 | 14 |
# histogram of n hours out
ggplot(data = veritas_main) +
geom_histogram(aes(x = hours_out_neighb))
# Min, max, median & mean hours/day out of neighborhood
kable(t(as.matrix(summary(veritas_main$hours_out_neighb))),
caption = "Hours/day outside neighbourhood",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
0 | 6 | 8 | 7.3 | 9 | 12 |
# extract and recode
.unsafe <- veritas_main[c("interact_id", "unsafe_area")] %>% dplyr::rename(unsafe_area_code = unsafe_area)
.unsafe$unsafe_area <- factor(ifelse(.unsafe$unsafe_area_code == 1, "1 [Yes]",
ifelse(.unsafe$unsafe_area_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .unsafe) +
geom_histogram(aes(x = unsafe_area), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "unsafe_area")
.unsafe_cnt <- .unsafe %>%
group_by(unsafe_area) %>%
dplyr::count() %>%
arrange(unsafe_area)
kable(.unsafe_cnt, caption = "Unsafe areas") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
unsafe_area | n |
---|---|
1 [Yes] | 22 |
2 [No] | 104 |
# map
unsafe <- poly_geom[poly_geom$area_type == "unsafe area", ]
## version ggmap
bm + geom_sf(data = unsafe, inherit.aes = FALSE, fill = alpha("blue", 0.3), color = alpha("blue", 0.5))
# Min, max, median & mean area of PRN
unsafe$area_m2 <- st_area(unsafe$geom)
kable(t(as.matrix(summary(unsafe$area_m2))),
caption = "Area (in square meters) of the perceived unsafe area",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
11109.7 | 33768.7 | 94741.3 | 199977.2 | 248634.9 | 1499185 |
# extract and recode
.o_res <- veritas_main[c("interact_id", "other_resid")] %>% dplyr::rename(other_resid_code = other_resid)
.o_res$other_resid <- factor(ifelse(.o_res$other_resid_code == 1, "1 [Yes]",
ifelse(.o_res$other_resid_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .o_res) +
geom_histogram(aes(x = other_resid), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "other_resid")
.o_res_cnt <- .o_res %>%
group_by(other_resid) %>%
dplyr::count() %>%
arrange(other_resid)
kable(.o_res_cnt, caption = "Other residence") %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
other_resid | n |
---|---|
1 [Yes] | 8 |
2 [No] | 118 |
# extract and recode
.work <- veritas_main[c("interact_id", "working")] %>% dplyr::rename(working_code = working)
.work$working <- factor(ifelse(.work$working_code == 1, "1 [Yes]",
ifelse(.work$working_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .work) +
geom_histogram(aes(x = working), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "working")
.work_cnt <- .work %>%
group_by(working) %>%
dplyr::count() %>%
arrange(working)
kable(.work_cnt, caption = "Currently working") %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
working | n |
---|---|
1 [Yes] | 114 |
2 [No] | 12 |
work_location <- locations[locations$location_category == 3, ]
bm + geom_sf(data = work_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
# histogram of n hours out
ggplot(data = veritas_main[veritas_main$working == 1, ]) +
geom_histogram(aes(x = work_hours))
# Min, max, median & mean hours/day out
kable(t(as.matrix(summary(veritas_main$work_hours[veritas_main$working == 1]))),
caption = "Work hours/week",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
7 | 35 | 38 | 36 | 40 | 60 |
# extract and recode
.work_pa <- veritas_main[veritas_main$working == 1, c("interact_id", "work_pa")] %>% dplyr::rename(work_pa_code = work_pa)
.work_pa$work_pa <- factor(ifelse(.work_pa$work_pa_code == 1, "1 [Mainly sitting with slight arm movements]",
ifelse(.work_pa$work_pa_code == 2, "2 [Sitting and standing with some walking]",
ifelse(.work_pa$work_pa_code == 3, "3 [Walking, with some handling of materials generally weighing less than 25 kg (55 lbs)]",
ifelse(.work_pa$work_pa_code == 4, "4 [Walking and heavy manual work often requiring handling of materials weighing over 25 kg (50 lbs)]", "N/A")
)
)
))
# histogram of answers
ggplot(data = .work_pa) +
geom_histogram(aes(x = work_pa), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Physical activity at work")
.work_pa_cnt <- .work_pa %>%
group_by(work_pa) %>%
dplyr::count() %>%
arrange(work_pa)
kable(.work_pa_cnt, caption = "Physical activity at work") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
work_pa | n |
---|---|
1 [Mainly sitting with slight arm movements] | 57 |
2 [Sitting and standing with some walking] | 44 |
3 [Walking, with some handling of materials generally weighing less than 25 kg (55 lbs)] | 13 |
# extract and recode
.study <- veritas_main[c("interact_id", "studying")] %>% dplyr::rename(studying_code = studying)
.study$studying <- factor(ifelse(.study$studying_code == 1, "1 [Yes]",
ifelse(.study$studying_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .study) +
geom_histogram(aes(x = studying), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Studying")
.study_cnt <- .study %>%
group_by(studying) %>%
dplyr::count() %>%
arrange(studying)
kable(.study_cnt, caption = "Currently studying") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
studying | n |
---|---|
1 [Yes] | 11 |
2 [No] | 115 |
study_location <- locations[locations$location_category == 4, ]
bm + geom_sf(data = study_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
# histogram of n hours out
ggplot(data = veritas_main[veritas_main$studying == 1, ]) +
geom_histogram(aes(x = study_hours))
# Min, max, median & mean hours/day out
kable(t(as.matrix(summary(veritas_main$study_hours[veritas_main$studying == 1]))),
caption = "study hours/week",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
1 | 6 | 10 | 18.1 | 22.5 | 65 |
The following questions are used to generate the locations grouped into this section:
shop_lut <- data.frame(
location_category_code = c(5, 6, 7, 8, 9, 10),
location_category = factor(c(
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]"
))
)
shop_location <- locations[locations$location_category %in% shop_lut$location_category_code, ] %>%
dplyr::rename(location_category_code = location_category) %>%
inner_join(shop_lut, by = "location_category_code")
# map
bm + geom_sf(data = shop_location, inherit.aes = FALSE, aes(color = location_category), size = 1.5, alpha = .3) +
scale_color_brewer(palette = "Accent") +
theme(legend.position = "bottom", legend.text = element_text(size = 8), legend.title = element_blank())
# compute number of shopping locations by category
ggplot(data = shop_location) +
geom_histogram(aes(x = location_category), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Shopping locations by categories")
.location_category_cnt <- as.data.frame(shop_location[c("location_category")]) %>%
group_by(location_category) %>%
dplyr::count() %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Shopping locations by categories") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | n |
---|---|
5 [Supermarket] | 357 |
6 [Public/farmer’s market] | 42 |
7 [Bakery] | 66 |
8 [Specialty food store] | 59 |
9 [Convenience store/Dépanneur] | 27 |
10 [Liquor store/SAQ] | 152 |
# compute statistics on shopping locations by participants and categories
# > one needs to account for participants who did not report location for some categories
.loc_iid_category_cnt <- as.data.frame(shop_location[c("interact_id", "location_category")]) %>%
group_by(interact_id, location_category) %>%
dplyr::count()
# (cont'd) simulate SQL JOIN TABLE ON TRUE to build list of all combination iid/shopping categ
.dummy <- data_frame(
interact_id = character(),
location_category = character()
)
for (iid in as.vector(veritas_main$interact_id)) {
.dmy <- data_frame(
interact_id = as.character(iid),
location_category = shop_lut$location_category
)
.dummy <- rbind(.dummy, .dmy)
}
# (cont'd) find iid/categ combination without match in veritas locations
.no_shop_iid <- dplyr::setdiff(.dummy, .loc_iid_category_cnt[c("location_category", "interact_id")]) %>%
mutate(n = 0)
.loc_iid_category_cnt <- bind_rows(.loc_iid_category_cnt, .no_shop_iid)
.location_category_cnt <- .loc_iid_category_cnt %>%
group_by(location_category) %>%
dplyr::summarise(min = min(n), mean = round(mean(n), 2), median = median(n), max = max(n)) %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Number of shopping locations by participant and category") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | min | mean | median | max |
---|---|---|---|---|
5 [Supermarket] | 0 | 2.83 | 3 | 5 |
6 [Public/farmer’s market] | 0 | 0.33 | 0 | 5 |
7 [Bakery] | 0 | 0.52 | 0 | 5 |
8 [Specialty food store] | 0 | 0.47 | 0 | 5 |
9 [Convenience store/Dépanneur] | 0 | 0.21 | 0 | 3 |
10 [Liquor store/SAQ] | 0 | 1.21 | 1 | 5 |
The following questions are used to generate the locations grouped into this section:
serv_lut <- data.frame(
location_category_code = c(11, 12, 13, 14, 15),
location_category = factor(c(
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]"
))
)
serv_location <- locations[locations$location_category %in% serv_lut$location_category_code, ] %>%
dplyr::rename(location_category_code = location_category) %>%
inner_join(serv_lut, by = "location_category_code")
# map
bm + geom_sf(data = serv_location, inherit.aes = FALSE, aes(color = location_category), size = 1.5, alpha = .3) +
scale_color_brewer(palette = "Accent") +
theme(legend.position = "bottom", legend.text = element_text(size = 8), legend.title = element_blank())
# compute number of shopping locations by category
ggplot(data = serv_location) +
geom_histogram(aes(x = location_category), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Service locations by categories")
.location_category_cnt <- as.data.frame(serv_location[c("location_category")]) %>%
group_by(location_category) %>%
dplyr::count() %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Shopping locations by categories") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | n |
---|---|
11 [Bank] | 113 |
12 [Hair salon/barbershop] | 85 |
13 [Post office] | 78 |
14 [Drugstore] | 98 |
15 [Doctor/healthcare provider] | 138 |
# compute statistics on shopping locations by participants and categories
# > one needs to account for participants who did not report location for some categories
.loc_iid_category_cnt <- as.data.frame(serv_location[c("interact_id", "location_category")]) %>%
group_by(interact_id, location_category) %>%
dplyr::count()
# (cont'd) simulate SQL JOIN TABLE ON TRUE
.dummy <- data_frame(
interact_id = character(),
location_category = character()
)
for (iid in as.vector(veritas_main$interact_id)) {
.dmy <- data_frame(
interact_id = as.character(iid),
location_category = serv_lut$location_category
)
.dummy <- rbind(.dummy, .dmy)
}
# (cont'd) find iid/categ combination without match in veritas locations
.no_serv_iid <- dplyr::setdiff(.dummy, .loc_iid_category_cnt[c("location_category", "interact_id")]) %>%
mutate(n = 0)
.loc_iid_category_cnt <- bind_rows(.loc_iid_category_cnt, .no_serv_iid)
.location_category_cnt <- .loc_iid_category_cnt %>%
group_by(location_category) %>%
dplyr::summarise(min = min(n), mean = round(mean(n), 2), median = median(n), max = max(n)) %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Number of shopping locations by participant and category") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | min | mean | median | max |
---|---|---|---|---|
11 [Bank] | 0 | 0.90 | 1 | 1 |
12 [Hair salon/barbershop] | 0 | 0.67 | 1 | 1 |
13 [Post office] | 0 | 0.62 | 1 | 1 |
14 [Drugstore] | 0 | 0.78 | 1 | 1 |
15 [Doctor/healthcare provider] | 0 | 1.10 | 1 | 5 |
# extract and recode
.transp <- veritas_main[c("interact_id", "public_transit")] %>% dplyr::rename(public_transit_code = public_transit)
.transp$public_transit <- factor(ifelse(.transp$public_transit_code == 1, "1 [Yes]",
ifelse(.transp$public_transit_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .transp) +
geom_histogram(aes(x = public_transit), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "public_transit")
.transp_cnt <- .transp %>%
group_by(public_transit) %>%
dplyr::count() %>%
arrange(public_transit)
kable(.transp_cnt, caption = "Use public transit") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
public_transit | n |
---|---|
1 [Yes] | 64 |
2 [No] | 62 |
transp_location <- locations[locations$location_category == 16, ]
bm + geom_sf(data = transp_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
The following questions are used to generate the locations grouped into this section:
leisure_lut <- data.frame(
location_category_code = c(17, 18, 19, 20, 21, 22, 23, 24),
location_category = factor(c(
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious or spiritual activity]",
"22 [Restaurant, café, bar, etc. ]",
"23 [Take-out]",
"24 [Walk]"
))
)
leisure_location <- locations[locations$location_category %in% leisure_lut$location_category_code, ] %>%
dplyr::rename(location_category_code = location_category) %>%
inner_join(leisure_lut, by = "location_category_code")
# map
bm + geom_sf(data = leisure_location, inherit.aes = FALSE, aes(color = location_category), size = 1.5, alpha = .3) +
scale_color_brewer(palette = "Accent") +
theme(legend.position = "bottom", legend.text = element_text(size = 8), legend.title = element_blank())
# compute number of shopping locations by category
ggplot(data = leisure_location) +
geom_histogram(aes(x = location_category), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Leisure locations by categories")
.location_category_cnt <- as.data.frame(leisure_location[c("location_category")]) %>%
group_by(location_category) %>%
dplyr::count() %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Shopping locations by categories") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | n |
---|---|
17 [Leisure-time physical activity] | 162 |
18 [Park] | 272 |
19 [Cultural activity] | 54 |
20 [Volunteering place] | 60 |
21 [Religious or spiritual activity] | 14 |
22 [Restaurant, café, bar, etc. ] | 285 |
23 [Take-out] | 94 |
24 [Walk] | 178 |
# compute statistics on shopping locations by participants and categories
# > one needs to account for participants who did not report location for some categories
.loc_iid_category_cnt <- as.data.frame(leisure_location[c("interact_id", "location_category")]) %>%
group_by(interact_id, location_category) %>%
dplyr::count()
# (cont'd) simulate SQL JOIN TABLE ON TRUE
.dummy <- data_frame(
interact_id = character(),
location_category = character()
)
for (iid in as.vector(veritas_main$interact_id)) {
.dmy <- data_frame(
interact_id = as.character(iid),
location_category = leisure_lut$location_category
)
.dummy <- rbind(.dummy, .dmy)
}
# (cont'd) find iid/categ combination without match in veritas locations
.no_leisure_iid <- dplyr::setdiff(.dummy, .loc_iid_category_cnt[c("location_category", "interact_id")]) %>%
mutate(n = 0)
.loc_iid_category_cnt <- bind_rows(.loc_iid_category_cnt, .no_leisure_iid)
.location_category_cnt <- .loc_iid_category_cnt %>%
group_by(location_category) %>%
dplyr::summarise(min = min(n), mean = round(mean(n), 2), median = median(n), max = max(n)) %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Number of leisure locations by participant and category") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | min | mean | median | max |
---|---|---|---|---|
17 [Leisure-time physical activity] | 0 | 1.29 | 1 | 5 |
18 [Park] | 0 | 2.16 | 2 | 5 |
19 [Cultural activity] | 0 | 0.43 | 0 | 4 |
20 [Volunteering place] | 0 | 0.48 | 0 | 5 |
21 [Religious or spiritual activity] | 0 | 0.11 | 0 | 2 |
22 [Restaurant, café, bar, etc. ] | 0 | 2.26 | 2 | 5 |
23 [Take-out] | 0 | 0.75 | 0 | 5 |
24 [Walk] | 0 | 1.41 | 1 | 5 |
# extract and recode
.other <- veritas_main[c("interact_id", "other")] %>% dplyr::rename(other_code = other)
.other$other <- factor(ifelse(.other$other_code == 1, "1 [Yes]",
ifelse(.other$other_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .other) +
geom_histogram(aes(x = other), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "other")
.other_cnt <- .other %>%
group_by(other) %>%
dplyr::count() %>%
arrange(other)
kable(.other_cnt, caption = "Other places") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
other | n |
---|---|
1 [Yes] | 43 |
2 [No] | 83 |
other_location <- locations[locations$location_category == 25, ]
bm + geom_sf(data = other_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
Participants were not asked for areas of change in Victoria
Based on the answers to the question Usually, how do you go there? (Check all that apply.).
# code en
# 1 By car and you drive
# 2 By car and someone else drives
# 3 By taxi/Uber
# 4 On foot
# 5 By bike
# 6 By bus
# 7 By subway
# 8 By train
# 99 Other
loc_labels <- data.frame(location_category = c(2:26), description = c(
" 2 [Other residence]",
" 3 [Work]",
" 4 [School/College/University]",
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]",
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]",
"16 [Public transit stop]",
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious/spiritual activity]",
"22 [Restaurant, café, bar, etc.]",
"23 [Take-out]",
"24 [Walk]",
"25 [Other place]",
"26 [Social contact residence]"
))
# extract and summary stats
.tm <- locations %>%
st_set_geometry(NULL) %>%
filter(location_category != 1) %>%
left_join(loc_labels)
.tm_grouped <- .tm %>%
group_by(description) %>%
dplyr::summarise(
N = n(), "By car (driver)" = sum(location_tmode_1),
"By car (passenger)" = sum(location_tmode_2),
"By taxi/Uber" = sum(location_tmode_3),
"On foot" = sum(location_tmode_4),
"By bike" = sum(location_tmode_5),
"By bus" = sum(location_tmode_6),
"By train" = sum(location_tmode_7),
"Other" = sum(location_tmode_99)
)
kable(.tm_grouped, caption = "Transportation mode preferences") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
description | N | By car (driver) | By car (passenger) | By taxi/Uber | On foot | By bike | By bus | By train | Other |
---|---|---|---|---|---|---|---|---|---|
2 [Other residence] | 9 | 3 | 4 | 0 | 1 | 6 | 1 | 0 | 1 |
3 [Work] | 146 | 28 | 5 | 0 | 26 | 115 | 24 | 0 | 9 |
4 [School/College/University] | 14 | 1 | 0 | 0 | 3 | 9 | 8 | 0 | 2 |
5 [Supermarket] | 357 | 190 | 39 | 0 | 129 | 182 | 9 | 0 | 2 |
6 [Public/farmer’s market] | 42 | 16 | 4 | 0 | 17 | 23 | 1 | 0 | 1 |
7 [Bakery] | 66 | 18 | 3 | 0 | 32 | 31 | 2 | 0 | 1 |
8 [Specialty food store] | 59 | 18 | 6 | 0 | 28 | 31 | 4 | 0 | 1 |
9 [Convenience store/Dépanneur] | 27 | 7 | 1 | 0 | 16 | 8 | 1 | 0 | 1 |
10 [Liquor store/SAQ] | 152 | 61 | 7 | 0 | 68 | 77 | 4 | 0 | 0 |
11 [Bank] | 113 | 38 | 4 | 0 | 48 | 60 | 7 | 0 | 1 |
12 [Hair salon/barbershop] | 85 | 24 | 0 | 0 | 37 | 52 | 6 | 0 | 0 |
13 [Post office] | 78 | 27 | 3 | 0 | 46 | 43 | 2 | 0 | 1 |
14 [Drugstore] | 98 | 38 | 5 | 0 | 55 | 52 | 3 | 0 | 2 |
15 [Doctor/healthcare provider] | 138 | 57 | 10 | 0 | 30 | 79 | 17 | 0 | 1 |
16 [Public transit stop] | 125 | 1 | 1 | 0 | 108 | 10 | 14 | 0 | 3 |
17 [Leisure-time physical activity] | 162 | 61 | 21 | 0 | 51 | 84 | 5 | 0 | 2 |
18 [Park] | 272 | 56 | 19 | 0 | 163 | 102 | 3 | 0 | 3 |
19 [Cultural activity] | 54 | 28 | 8 | 0 | 10 | 19 | 4 | 0 | 1 |
20 [Volunteering place] | 60 | 24 | 5 | 0 | 18 | 37 | 5 | 0 | 1 |
21 [Religious/spiritual activity] | 14 | 5 | 1 | 0 | 2 | 10 | 3 | 0 | 1 |
22 [Restaurant, café, bar, etc.] | 285 | 80 | 40 | 0 | 155 | 141 | 18 | 0 | 3 |
23 [Take-out] | 94 | 42 | 12 | 0 | 29 | 25 | 1 | 0 | 8 |
24 [Walk] | 178 | 30 | 13 | 0 | 146 | 19 | 2 | 0 | 2 |
25 [Other place] | 70 | 27 | 9 | 1 | 13 | 43 | 5 | 0 | 2 |
# graph
.tm1 <- .tm %>%
filter(location_tmode_1 == 1) %>%
mutate(tm = "[1] By car (driver)")
.tm2 <- .tm %>%
filter(location_tmode_2 == 1) %>%
mutate(tm = "[2] By car (passenger)")
.tm3 <- .tm %>%
filter(location_tmode_3 == 1) %>%
mutate(tm = "[3] By taxi/Uber")
.tm4 <- .tm %>%
filter(location_tmode_4 == 1) %>%
mutate(tm = "[4] On foot")
.tm5 <- .tm %>%
filter(location_tmode_5 == 1) %>%
mutate(tm = "[5] By bike")
.tm6 <- .tm %>%
filter(location_tmode_6 == 1) %>%
mutate(tm = "[6] By bus")
.tm7 <- .tm %>%
filter(location_tmode_7 == 1) %>%
mutate(tm = "[7] By train")
.tm99 <- .tm %>%
filter(location_tmode_99 == 1) %>%
mutate(tm = "[99] Other")
.tm <- bind_rows(.tm1, .tm2) %>%
bind_rows(.tm3) %>%
bind_rows(.tm4) %>%
bind_rows(.tm5) %>%
bind_rows(.tm6) %>%
bind_rows(.tm7) %>%
bind_rows(.tm99)
# histogram of answers
ggplot(data = .tm) +
geom_bar(aes(x = fct_rev(description), fill = tm), position = "fill") +
scale_fill_brewer(palette = "Set3", name = "Transport modes") +
scale_y_continuous(labels = percent) +
labs(y = "Proportion of transportation mode by location category", x = element_blank()) +
coord_flip() +
theme(legend.position = "bottom", legend.justification = c(0, 0), legend.text = element_text(size = 8)) +
guides(fill = guide_legend(nrow = 3))
Based on the answers to the question Do you usually go to this place alone or with other people?.
loc_labels <- data.frame(location_category = c(2:26), description = c(
" 2 [Other residence]",
" 3 [Work]",
" 4 [School/College/University]",
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]",
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]",
"16 [Public transit stop]",
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious/spiritual activity]",
"22 [Restaurant, café, bar, etc.]",
"23 [Take-out]",
"24 [Walk]",
"25 [Other place]",
"26 [Social contact residence]"
))
# extract and summary stats
.alone <- locations %>%
st_set_geometry(NULL) %>%
filter(location_category != 1) %>%
left_join(loc_labels) %>%
mutate(location_alone_recode = case_when(
location_alone2 == 1 ~ 1,
location_alone2 == 2 ~ 0
))
.alone_grouped <- .alone %>%
group_by(description) %>%
dplyr::summarise(
N = n(), "Visited alone" = sum(location_alone_recode),
"Visited alone (%)" = round(sum(location_alone_recode) * 100.0 / n(), digits = 1)
)
kable(.alone_grouped, caption = "Visiting places alone") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
description | N | Visited alone | Visited alone (%) |
---|---|---|---|
2 [Other residence] | 9 | 1 | 11.1 |
3 [Work] | 146 | 28 | 19.2 |
4 [School/College/University] | 14 | 5 | 35.7 |
5 [Supermarket] | 357 | 221 | 61.9 |
6 [Public/farmer’s market] | 42 | 7 | 16.7 |
7 [Bakery] | 66 | 44 | 66.7 |
8 [Specialty food store] | 59 | 38 | 64.4 |
9 [Convenience store/Dépanneur] | 27 | 18 | 66.7 |
10 [Liquor store/SAQ] | 152 | 115 | 75.7 |
11 [Bank] | 113 | 101 | 89.4 |
12 [Hair salon/barbershop] | 85 | 82 | 96.5 |
13 [Post office] | 78 | 69 | 88.5 |
14 [Drugstore] | 98 | 77 | 78.6 |
15 [Doctor/healthcare provider] | 138 | 114 | 82.6 |
16 [Public transit stop] | 125 | 89 | 71.2 |
17 [Leisure-time physical activity] | 162 | 65 | 40.1 |
18 [Park] | 272 | 80 | 29.4 |
19 [Cultural activity] | 54 | 7 | 13.0 |
20 [Volunteering place] | 60 | 27 | 45.0 |
21 [Religious/spiritual activity] | 14 | 3 | 21.4 |
22 [Restaurant, café, bar, etc.] | 285 | 66 | 23.2 |
23 [Take-out] | 94 | 54 | 57.4 |
24 [Walk] | 178 | 87 | 48.9 |
25 [Other place] | 70 | 24 | 34.3 |
# histogram of answers
ggplot(data = .alone) +
geom_bar(aes(x = fct_rev(description), fill = factor(location_alone2)), position = "fill") +
scale_fill_brewer(palette = "Set3", name = "Visiting places", labels = c("Alone", "With someone")) +
scale_y_continuous(labels = percent) +
labs(y = "Proportion of places visited alone", x = element_blank()) +
coord_flip()
Based on the answers to the question How often do you go there?.
loc_labels <- data.frame(location_category = c(2:26), description = c(
" 2 [Other residence]",
" 3 [Work]",
" 4 [School/College/University]",
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]",
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]",
"16 [Public transit stop]",
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious/spiritual activity]",
"22 [Restaurant, café, bar, etc.]",
"23 [Take-out]",
"24 [Walk]",
"25 [Other place]",
"26 [Social contact residence]"
))
# extract and summary stats
.freq <- locations %>%
st_set_geometry(NULL) %>%
filter(location_category != 1) %>%
left_join(loc_labels)
.freq_grouped <- .freq %>%
group_by(description) %>%
dplyr::summarise(
N = n(), min = min(location_freq_visit),
max = max(location_freq_visit),
mean = mean(location_freq_visit),
median = median(location_freq_visit),
sd = sd(location_freq_visit)
)
kable(.freq_grouped, caption = "Visit frequency (expressed in times/year)") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
description | N | min | max | mean | median | sd |
---|---|---|---|---|---|---|
2 [Other residence] | 9 | 12 | 180 | 70.666667 | 52 | 63.466527 |
3 [Work] | 146 | 2 | 365 | 200.123288 | 260 | 95.499478 |
4 [School/College/University] | 14 | 0 | 260 | 104.214286 | 52 | 107.137710 |
5 [Supermarket] | 357 | 0 | 364 | 57.722689 | 52 | 54.682165 |
6 [Public/farmer’s market] | 42 | 2 | 208 | 28.023809 | 24 | 33.142330 |
7 [Bakery] | 66 | 3 | 156 | 35.909091 | 24 | 33.702192 |
8 [Specialty food store] | 59 | 1 | 260 | 51.237288 | 36 | 52.429374 |
9 [Convenience store/Dépanneur] | 27 | 3 | 104 | 35.037037 | 24 | 33.419802 |
10 [Liquor store/SAQ] | 152 | 2 | 156 | 27.513158 | 12 | 26.856249 |
11 [Bank] | 113 | 1 | 156 | 18.699115 | 12 | 24.345315 |
12 [Hair salon/barbershop] | 85 | 2 | 24 | 5.882353 | 4 | 4.351824 |
13 [Post office] | 78 | 1 | 208 | 15.512821 | 5 | 33.651670 |
14 [Drugstore] | 98 | 3 | 156 | 22.336735 | 12 | 25.847668 |
15 [Doctor/healthcare provider] | 138 | 1 | 104 | 5.594203 | 3 | 10.962869 |
16 [Public transit stop] | 125 | 0 | 520 | 41.512000 | 12 | 69.371443 |
17 [Leisure-time physical activity] | 162 | 0 | 364 | 95.154321 | 52 | 73.396530 |
18 [Park] | 272 | 1 | 728 | 75.992647 | 48 | 98.722392 |
19 [Cultural activity] | 54 | 1 | 364 | 27.851852 | 12 | 53.145016 |
20 [Volunteering place] | 60 | 1 | 364 | 50.050000 | 24 | 77.923566 |
21 [Religious/spiritual activity] | 14 | 12 | 364 | 80.000000 | 36 | 111.890056 |
22 [Restaurant, café, bar, etc.] | 285 | 2 | 520 | 29.771930 | 12 | 47.414050 |
23 [Take-out] | 94 | 0 | 104 | 14.712766 | 12 | 14.871942 |
24 [Walk] | 178 | 2 | 1820 | 100.977528 | 52 | 167.162594 |
25 [Other place] | 70 | 4 | 260 | 55.585714 | 24 | 69.408994 |
# graph
ggplot(data = .freq) +
geom_boxplot(aes(x = fct_rev(description), y = location_freq_visit)) +
scale_y_continuous(limits = c(0, 365)) +
labs(y = "Visits/year (Frequency over 1 visit/day not shown)", x = element_blank()) +
coord_flip()
Below is a list of indicators proposed by Camille Perchoux in her paper Assessing patterns of spatial behavior in health studies: Their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study).
-- Reading Camille tbx indics from Essence table
SELECT interact_id,
n_acti_places, n_weekly_vst, n_acti_types,
cvx_perimeter, cvx_surface,
min_length, max_length, median_length,
pct_visits_neighb,
n_acti_prn, pct_visits_prn, prn_area_km2
FROM essence_table.essence_perchoux_tbx
WHERE city_id = 'Victoria' AND wave_id = 2 AND status = 'new'
home_location <- locations[locations$location_category == 1, ]
## version ggmap
vic_aoi <- st_bbox(home_location)
names(vic_aoi) <- c("left", "bottom", "right", "top")
vic_aoi[["left"]] <- vic_aoi[["left"]] - .07
vic_aoi[["right"]] <- vic_aoi[["right"]] + .07
vic_aoi[["top"]] <- vic_aoi[["top"]] + .01
vic_aoi[["bottom"]] <- vic_aoi[["bottom"]] - .01
bm <- get_stadiamap(vic_aoi, zoom = 11, maptype = "stamen_toner_lite") %>%
ggmap(extent = "device")
bm + geom_sf(data = st_jitter(home_location, .008), inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3) # see https://github.com/r-spatial/sf/issues/336
NB: Home locations have been randomly shifted from their original position to protect privacy.
# Number of participants by municipalites
home_by_municipalites <- st_join(home_location, municipalities["NAME"])
home_by_mun_cnt <- as.data.frame(home_by_municipalites) %>%
group_by(NAME) %>%
dplyr::count() %>%
arrange(desc(n), NAME)
home_by_mun_cnt$Shape <- NULL
kable(home_by_mun_cnt, caption = "Number of participants by municipalities") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
NAME | n |
---|---|
Victoria | 49 |
Saanich | 33 |
Esquimalt | 7 |
Langford | 2 |
Oak Bay | 2 |
View Royal | 1 |
prn <- poly_geom[poly_geom$area_type == "neighborhood", ]
## version ggmap
bm + geom_sf(data = prn, inherit.aes = FALSE, fill = alpha("blue", 0.05), color = alpha("blue", 0.3))
# Min, max, median & mean area of PRN
prn$area_m2 <- st_area(prn$geom)
kable(t(as.matrix(summary(prn$area_m2))),
caption = "Area (in square meters) of the perceived residential neighborhood",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
8476.6 | 720596.6 | 1278462 | 2466199 | 2564457 | 35334533 |
NB only 87 valid neighborhoods were collected, as many participants struggled to draw polygons on the map.
# extract and recode
.ngh_att <- veritas_main[veritas_main$neighbourhood_attach != 99, c("interact_id", "neighbourhood_attach")] %>% dplyr::rename(neighbourhood_attach_code = neighbourhood_attach)
.ngh_att$neighbourhood_attach <- factor(ifelse(.ngh_att$neighbourhood_attach_code == 1, "1 [Not attached at all]",
ifelse(.ngh_att$neighbourhood_attach_code == 6, "6 [Very attached]",
.ngh_att$neighbourhood_attach_code
)
))
# histogram of attachment
ggplot(data = .ngh_att) +
geom_histogram(aes(x = neighbourhood_attach), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "neighbourhood_attach")
.ngh_att_cnt <- .ngh_att %>%
group_by(neighbourhood_attach) %>%
dplyr::count() %>%
arrange(neighbourhood_attach)
kable(.ngh_att_cnt, caption = "Neigbourhood attachment") %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
neighbourhood_attach | n |
---|---|
1 [Not attached at all] | 1 |
2 | 3 |
3 | 3 |
4 | 24 |
5 | 35 |
6 [Very attached] | 28 |
# histogram of n hours out
ggplot(data = veritas_main) +
geom_histogram(aes(x = hours_out))
# Min, max, median & mean hours/day out
kable(t(as.matrix(summary(veritas_main$hours_out))),
caption = "Hours/day outside home",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
1 | 6 | 9 | 8.4 | 10 | 15 |
# histogram of n hours out
ggplot(data = veritas_main) +
geom_histogram(aes(x = hours_out_neighb))
# Min, max, median & mean hours/day out of neighborhood
kable(t(as.matrix(summary(veritas_main$hours_out_neighb))),
caption = "Hours/day outside neighbourhood",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
0 | 3.2 | 8 | 6.5 | 9 | 15 |
# extract and recode
.unsafe <- veritas_main[c("interact_id", "unsafe_area")] %>% dplyr::rename(unsafe_area_code = unsafe_area)
.unsafe$unsafe_area <- factor(ifelse(.unsafe$unsafe_area_code == 1, "1 [Yes]",
ifelse(.unsafe$unsafe_area_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .unsafe) +
geom_histogram(aes(x = unsafe_area), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "unsafe_area")
.unsafe_cnt <- .unsafe %>%
group_by(unsafe_area) %>%
dplyr::count() %>%
arrange(unsafe_area)
kable(.unsafe_cnt, caption = "Unsafe areas") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
unsafe_area | n |
---|---|
1 [Yes] | 15 |
2 [No] | 79 |
# map
unsafe <- poly_geom[poly_geom$area_type == "unsafe area", ]
## version ggmap
bm + geom_sf(data = unsafe, inherit.aes = FALSE, fill = alpha("blue", 0.3), color = alpha("blue", 0.5))
# Min, max, median & mean area of PRN
unsafe$area_m2 <- st_area(unsafe$geom)
kable(t(as.matrix(summary(unsafe$area_m2))),
caption = "Area (in square meters) of the perceived unsafe area",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
4690 | 41624.9 | 149243.7 | 249137.5 | 352565.1 | 867053.9 |
# extract and recode
.o_res <- veritas_main[c("interact_id", "other_resid")] %>% dplyr::rename(other_resid_code = other_resid)
.o_res$other_resid <- factor(ifelse(.o_res$other_resid_code == 1, "1 [Yes]",
ifelse(.o_res$other_resid_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .o_res) +
geom_histogram(aes(x = other_resid), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "other_resid")
.o_res_cnt <- .o_res %>%
group_by(other_resid) %>%
dplyr::count() %>%
arrange(other_resid)
kable(.o_res_cnt, caption = "Other residence") %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
other_resid | n |
---|---|
1 [Yes] | 1 |
2 [No] | 93 |
# extract and recode
.work <- veritas_main[c("interact_id", "working")] %>% dplyr::rename(working_code = working)
.work$working <- factor(ifelse(.work$working_code == 1, "1 [Yes]",
ifelse(.work$working_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .work) +
geom_histogram(aes(x = working), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "working")
.work_cnt <- .work %>%
group_by(working) %>%
dplyr::count() %>%
arrange(working)
kable(.work_cnt, caption = "Currently working") %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
working | n |
---|---|
1 [Yes] | 77 |
2 [No] | 17 |
work_location <- locations[locations$location_category == 3, ]
bm + geom_sf(data = work_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
# histogram of n hours out
ggplot(data = veritas_main[veritas_main$working == 1, ]) +
geom_histogram(aes(x = work_hours))
# Min, max, median & mean hours/day out
kable(t(as.matrix(summary(veritas_main$work_hours[veritas_main$working == 1]))),
caption = "Work hours/week",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
5 | 35 | 37 | 35.9 | 40 | 84 |
# extract and recode
.work_pa <- veritas_main[veritas_main$working == 1, c("interact_id", "work_pa")] %>% dplyr::rename(work_pa_code = work_pa)
.work_pa$work_pa <- factor(ifelse(.work_pa$work_pa_code == 1, "1 [Mainly sitting with slight arm movements]",
ifelse(.work_pa$work_pa_code == 2, "2 [Sitting and standing with some walking]",
ifelse(.work_pa$work_pa_code == 3, "3 [Walking, with some handling of materials generally weighing less than 25 kg (55 lbs)]",
ifelse(.work_pa$work_pa_code == 4, "4 [Walking and heavy manual work often requiring handling of materials weighing over 25 kg (50 lbs)]", "N/A")
)
)
))
# histogram of answers
ggplot(data = .work_pa) +
geom_histogram(aes(x = work_pa), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Physical activity at work")
.work_pa_cnt <- .work_pa %>%
group_by(work_pa) %>%
dplyr::count() %>%
arrange(work_pa)
kable(.work_pa_cnt, caption = "Physical activity at work") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
work_pa | n |
---|---|
1 [Mainly sitting with slight arm movements] | 35 |
2 [Sitting and standing with some walking] | 34 |
3 [Walking, with some handling of materials generally weighing less than 25 kg (55 lbs)] | 6 |
4 [Walking and heavy manual work often requiring handling of materials weighing over 25 kg (50 lbs)] | 2 |
# extract and recode
.study <- veritas_main[c("interact_id", "studying")] %>% dplyr::rename(studying_code = studying)
.study$studying <- factor(ifelse(.study$studying_code == 1, "1 [Yes]",
ifelse(.study$studying_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .study) +
geom_histogram(aes(x = studying), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Studying")
.study_cnt <- .study %>%
group_by(studying) %>%
dplyr::count() %>%
arrange(studying)
kable(.study_cnt, caption = "Currently studying") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
studying | n |
---|---|
1 [Yes] | 2 |
2 [No] | 92 |
study_location <- locations[locations$location_category == 4, ]
bm + geom_sf(data = study_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
# histogram of n hours out
ggplot(data = veritas_main[veritas_main$studying == 1, ]) +
geom_histogram(aes(x = study_hours))
# Min, max, median & mean hours/day out
kable(t(as.matrix(summary(veritas_main$study_hours[veritas_main$studying == 1]))),
caption = "study hours/week",
digits = 1
) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|
4 | 6.8 | 9.5 | 9.5 | 12.2 | 15 |
shop_lut <- data.frame(
location_category_code = c(5, 6, 7, 8, 9, 10),
location_category = factor(c(
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]"
))
)
shop_location <- locations[locations$location_category %in% shop_lut$location_category_code, ] %>%
filter(location_current == 1) %>%
dplyr::rename(location_category_code = location_category) %>%
inner_join(shop_lut, by = "location_category_code")
# map
bm + geom_sf(data = shop_location, inherit.aes = FALSE, aes(color = location_category), size = 1.5, alpha = .3) +
scale_color_brewer(palette = "Accent") +
theme(legend.position = "bottom", legend.text = element_text(size = 8), legend.title = element_blank())
# compute number of shopping locations by category
ggplot(data = shop_location) +
geom_histogram(aes(x = location_category), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Shopping locations by categories")
.location_category_cnt <- as.data.frame(shop_location[c("location_category")]) %>%
group_by(location_category) %>%
dplyr::count() %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Shopping locations by categories") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | n |
---|---|
5 [Supermarket] | 273 |
6 [Public/farmer’s market] | 35 |
7 [Bakery] | 53 |
8 [Specialty food store] | 47 |
9 [Convenience store/Dépanneur] | 13 |
# compute statistics on shopping locations by participants and categories
# > one needs to account for participants who did not report location for some categories
.loc_iid_category_cnt <- as.data.frame(shop_location[c("interact_id", "location_category")]) %>%
group_by(interact_id, location_category) %>%
dplyr::count()
# (cont'd) simulate SQL JOIN TABLE ON TRUE to build list of all combination iid/shopping categ
.dummy <- data_frame(
interact_id = character(),
location_category = character()
)
for (iid in as.vector(veritas_main$interact_id)) {
.dmy <- data_frame(
interact_id = as.character(iid),
location_category = shop_lut$location_category
)
.dummy <- rbind(.dummy, .dmy)
}
# (cont'd) find iid/categ combination without match in veritas locations
.no_shop_iid <- dplyr::setdiff(.dummy, .loc_iid_category_cnt[c("location_category", "interact_id")]) %>%
mutate(n = 0)
.loc_iid_category_cnt <- bind_rows(.loc_iid_category_cnt, .no_shop_iid)
.location_category_cnt <- .loc_iid_category_cnt %>%
group_by(location_category) %>%
dplyr::summarise(min = min(n), mean = round(mean(n), 2), median = median(n), max = max(n)) %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Number of shopping locations by participant and category") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | min | mean | median | max |
---|---|---|---|---|
5 [Supermarket] | 0 | 2.90 | 3 | 5 |
6 [Public/farmer’s market] | 0 | 0.37 | 0 | 4 |
7 [Bakery] | 0 | 0.56 | 0 | 4 |
8 [Specialty food store] | 0 | 0.50 | 0 | 5 |
9 [Convenience store/Dépanneur] | 0 | 0.14 | 0 | 3 |
10 [Liquor store/SAQ] | 0 | 0.00 | 0 | 0 |
NB: Variable grp_shopping_new
has not been
properly recorded in Victoria wave 2 for returning participants.
# extract and recode
.grp_shopping <- veritas_main[c("interact_id", "grp_shopping_new")] %>% dplyr::rename(grp_shopping_new_code = grp_shopping_new)
.grp_shopping$grp_shopping_new <- factor(ifelse(.grp_shopping$grp_shopping_new_code == 1, "1 [Yes]",
ifelse(.grp_shopping$grp_shopping_new_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .grp_shopping) +
geom_histogram(aes(x = grp_shopping_new), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "grp_shopping_new")
.grp_shopping_cnt <- .grp_shopping %>%
group_by(grp_shopping_new) %>%
dplyr::count() %>%
arrange(grp_shopping_new)
kable(.grp_shopping_cnt, caption = "New shopping places") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
serv_lut <- data.frame(
location_category_code = c(11, 12, 13, 14, 15),
location_category = factor(c(
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 Doctor/healthcare provider]"
))
)
serv_location <- locations[locations$location_category %in% serv_lut$location_category_code, ] %>%
filter(location_current == 1) %>%
dplyr::rename(location_category_code = location_category) %>%
inner_join(serv_lut, by = "location_category_code")
# map
bm + geom_sf(data = serv_location, inherit.aes = FALSE, aes(color = location_category), size = 1.5, alpha = .3) +
scale_color_brewer(palette = "Accent") +
theme(legend.position = "bottom", legend.text = element_text(size = 8), legend.title = element_blank())
# compute number of shopping locations by category
ggplot(data = serv_location) +
geom_histogram(aes(x = location_category), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Service locations by categories")
.location_category_cnt <- as.data.frame(serv_location[c("location_category")]) %>%
group_by(location_category) %>%
dplyr::count() %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Shopping locations by categories") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | n |
---|---|
11 [Bank] | 72 |
12 [Hair salon/barbershop] | 48 |
13 [Post office] | 59 |
14 [Drugstore] | 69 |
15 Doctor/healthcare provider] | 86 |
# compute statistics on shopping locations by participants and categories
# > one needs to account for participants who did not report location for some categories
.loc_iid_category_cnt <- as.data.frame(serv_location[c("interact_id", "location_category")]) %>%
group_by(interact_id, location_category) %>%
dplyr::count()
# (cont'd) simulate SQL JOIN TABLE ON TRUE
.dummy <- data_frame(
interact_id = character(),
location_category = character()
)
for (iid in as.vector(veritas_main$interact_id)) {
.dmy <- data_frame(
interact_id = as.character(iid),
location_category = serv_lut$location_category
)
.dummy <- rbind(.dummy, .dmy)
}
# (cont'd) find iid/categ combination without match in veritas locations
.no_serv_iid <- dplyr::setdiff(.dummy, .loc_iid_category_cnt[c("location_category", "interact_id")]) %>%
mutate(n = 0)
.loc_iid_category_cnt <- bind_rows(.loc_iid_category_cnt, .no_serv_iid)
.location_category_cnt <- .loc_iid_category_cnt %>%
group_by(location_category) %>%
dplyr::summarise(min = min(n), mean = round(mean(n), 2), median = median(n), max = max(n)) %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Number of shopping locations by participant and category") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | min | mean | median | max |
---|---|---|---|---|
11 [Bank] | 0 | 0.77 | 1 | 1 |
12 [Hair salon/barbershop] | 0 | 0.51 | 1 | 1 |
13 [Post office] | 0 | 0.63 | 1 | 1 |
14 [Drugstore] | 0 | 0.73 | 1 | 1 |
15 Doctor/healthcare provider] | 0 | 0.91 | 1 | 5 |
NB: Variable grp_services_new
has not been
properly recorded in Victoria wave 2 for returning participants.
# extract and recode
.grp_services <- veritas_main[c("interact_id", "grp_services_new")] %>% dplyr::rename(grp_services_new_code = grp_services_new)
.grp_services$grp_services_new <- factor(ifelse(.grp_services$grp_services_new_code == 1, "1 [Yes]",
ifelse(.grp_services$grp_services_new_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .grp_services) +
geom_histogram(aes(x = grp_services_new), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "grp_services_new")
.grp_services_cnt <- .grp_services %>%
group_by(grp_services_new) %>%
dplyr::count() %>%
arrange(grp_services_new)
kable(.grp_services_cnt, caption = "New services places") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
transp_location <- locations[locations$location_category == 16, ] %>% filter(location_current == 1)
bm + geom_sf(data = transp_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
NB: Variable grp_ptransit_new
has not been
properly recorded in Victoria wave 2 for returning participants.
# extract and recode
.grp_ptransit <- veritas_main[c("interact_id", "grp_ptransit_new")] %>% dplyr::rename(grp_ptransit_new_code = grp_ptransit_new)
.grp_ptransit$grp_ptransit_new <- factor(ifelse(.grp_ptransit$grp_ptransit_new_code == 1, "1 [Yes]",
ifelse(.grp_ptransit$grp_ptransit_new_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .grp_ptransit) +
geom_histogram(aes(x = grp_ptransit_new), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "grp_ptransit_new")
.grp_ptransit_cnt <- .grp_ptransit %>%
group_by(grp_ptransit_new) %>%
dplyr::count() %>%
arrange(grp_ptransit_new)
kable(.grp_ptransit_cnt, caption = "New transit places") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
leisure_lut <- data.frame(
location_category_code = c(17, 18, 19, 20, 21, 22, 23, 24),
location_category = factor(c(
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious or spiritual activity]",
"22 [Restaurant, café, bar, etc. ]",
"23 [Take-out]",
"24 [Walk]"
))
)
leisure_location <- locations[locations$location_category %in% leisure_lut$location_category_code, ] %>%
dplyr::rename(location_category_code = location_category) %>%
inner_join(leisure_lut, by = "location_category_code")
# map
bm + geom_sf(data = leisure_location, inherit.aes = FALSE, aes(color = location_category), size = 1.5, alpha = .3) +
scale_color_brewer(palette = "Accent") +
theme(legend.position = "bottom", legend.text = element_text(size = 8), legend.title = element_blank())
# compute number of shopping locations by category
ggplot(data = leisure_location) +
geom_histogram(aes(x = location_category), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "Leisure locations by categories")
.location_category_cnt <- as.data.frame(leisure_location[c("location_category")]) %>%
group_by(location_category) %>%
dplyr::count() %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Shopping locations by categories") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | n |
---|---|
17 [Leisure-time physical activity] | 113 |
18 [Park] | 180 |
19 [Cultural activity] | 64 |
20 [Volunteering place] | 37 |
21 [Religious or spiritual activity] | 5 |
22 [Restaurant, café, bar, etc. ] | 196 |
23 [Take-out] | 46 |
24 [Walk] | 168 |
# compute statistics on shopping locations by participants and categories
# > one needs to account for participants who did not report location for some categories
.loc_iid_category_cnt <- as.data.frame(leisure_location[c("interact_id", "location_category")]) %>%
group_by(interact_id, location_category) %>%
dplyr::count()
# (cont'd) simulate SQL JOIN TABLE ON TRUE
.dummy <- data_frame(
interact_id = character(),
location_category = character()
)
for (iid in as.vector(veritas_main$interact_id)) {
.dmy <- data_frame(
interact_id = as.character(iid),
location_category = leisure_lut$location_category
)
.dummy <- rbind(.dummy, .dmy)
}
# (cont'd) find iid/categ combination without match in veritas locations
.no_leisure_iid <- dplyr::setdiff(.dummy, .loc_iid_category_cnt[c("location_category", "interact_id")]) %>%
mutate(n = 0)
.loc_iid_category_cnt <- bind_rows(.loc_iid_category_cnt, .no_leisure_iid)
.location_category_cnt <- .loc_iid_category_cnt %>%
group_by(location_category) %>%
dplyr::summarise(min = min(n), mean = round(mean(n), 2), median = median(n), max = max(n)) %>%
arrange(location_category)
kable(.location_category_cnt, caption = "Number of leisure locations by participant and category") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
location_category | min | mean | median | max |
---|---|---|---|---|
17 [Leisure-time physical activity] | 0 | 1.20 | 1 | 5 |
18 [Park] | 0 | 1.91 | 1 | 5 |
19 [Cultural activity] | 0 | 0.68 | 0 | 5 |
20 [Volunteering place] | 0 | 0.39 | 0 | 3 |
21 [Religious or spiritual activity] | 0 | 0.05 | 0 | 1 |
22 [Restaurant, café, bar, etc. ] | 0 | 2.09 | 2 | 5 |
23 [Take-out] | 0 | 0.49 | 0 | 5 |
24 [Walk] | 0 | 1.79 | 1 | 5 |
NB: Variable grp_leisure_new
has not been
properly recorded in Victoria wave 2 for returning participants.
# extract and recode
.grp_leisure <- veritas_main[c("interact_id", "grp_leisure_new")] %>% dplyr::rename(grp_leisure_new_code = grp_leisure_new)
.grp_leisure$grp_leisure_new <- factor(ifelse(.grp_leisure$grp_leisure_new_code == 1, "1 [Yes]",
ifelse(.grp_leisure$grp_leisure_new_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .grp_leisure) +
geom_histogram(aes(x = grp_leisure_new), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "grp_leisure_new")
.grp_leisure_cnt <- .grp_leisure %>%
group_by(grp_leisure_new) %>%
dplyr::count() %>%
arrange(grp_leisure_new)
kable(.grp_leisure_cnt, caption = "New leisure places") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
other_location <- locations[locations$location_category == 25, ] %>% filter(location_current == 1)
bm + geom_sf(data = other_location, inherit.aes = FALSE, color = "blue", size = 1.8, alpha = .3)
NB: Variable other_new
has not been properly
recorded in Victoria wave 2 for returning participants.
# extract and recode
.other <- veritas_main[c("interact_id", "other_new")] %>% dplyr::rename(other_new_code = other_new)
.other$other_new <- factor(ifelse(.other$other_new_code == 1, "1 [Yes]",
ifelse(.other$other_new_code == 2, "2 [No]", "N/A")
))
# histogram of answers
ggplot(data = .other) +
geom_histogram(aes(x = other_new), stat = "count") +
scale_x_discrete(labels = function(lbl) str_wrap(lbl, width = 20)) +
labs(x = "other_new")
.other_cnt <- .other %>%
group_by(other_new) %>%
dplyr::count() %>%
arrange(other_new)
kable(.other_cnt, caption = "New other places") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
Participants were not asked for areas of change in Victoria
Based on the answers to the question Usually, how do you go there? (Check all that apply.).
# code en
# 1 By car and you drive
# 2 By car and someone else drives
# 3 By taxi/Uber
# 4 On foot
# 5 By bike
# 6 By bus
# 7 By subway
# 8 By train
# 99 Other
loc_labels <- data.frame(location_category = c(2:26), description = c(
" 2 [Other residence]",
" 3 [Work]",
" 4 [School/College/University]",
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]",
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]",
"16 [Public transit stop]",
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious/spiritual activity]",
"22 [Restaurant, café, bar, etc.]",
"23 [Take-out]",
"24 [Walk]",
"25 [Other place]",
"26 [Social contact residence]"
))
# extract and summary stats
.tm <- locations %>%
st_set_geometry(NULL) %>%
filter(location_category != 1 & location_current == 1) %>%
left_join(loc_labels)
.tm_grouped <- .tm %>%
group_by(description) %>%
dplyr::summarise(
N = n(), "By car (driver)" = sum(location_tmode_1),
"By car (passenger)" = sum(location_tmode_2),
"By taxi/Uber" = sum(location_tmode_3),
"On foot" = sum(location_tmode_4),
"By bike" = sum(location_tmode_5),
"By bus" = sum(location_tmode_6),
"By train" = sum(location_tmode_7),
"Other" = sum(location_tmode_99)
)
kable(.tm_grouped, caption = "Transportation mode preferences") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
description | N | By car (driver) | By car (passenger) | By taxi/Uber | On foot | By bike | By bus | By train | Other |
---|---|---|---|---|---|---|---|---|---|
2 [Other residence] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 [Work] | 106 | 18 | 2 | 0 | 15 | 85 | 13 | 1 | 12 |
4 [School/College/University] | 2 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
5 [Supermarket] | 273 | 118 | 35 | 0 | 88 | 170 | 4 | 0 | 4 |
6 [Public/farmer’s market] | 35 | 8 | 3 | 0 | 13 | 19 | 1 | 0 | 0 |
7 [Bakery] | 53 | 9 | 9 | 0 | 25 | 35 | 0 | 0 | 1 |
8 [Specialty food store] | 47 | 18 | 6 | 0 | 18 | 22 | 0 | 0 | 0 |
9 [Convenience store/Dépanneur] | 13 | 0 | 0 | 0 | 12 | 9 | 0 | 0 | 0 |
11 [Bank] | 72 | 21 | 4 | 0 | 33 | 50 | 3 | 0 | 0 |
12 [Hair salon/barbershop] | 48 | 8 | 0 | 0 | 18 | 29 | 2 | 0 | 1 |
13 [Post office] | 59 | 19 | 1 | 0 | 31 | 38 | 0 | 0 | 0 |
14 [Drugstore] | 69 | 24 | 3 | 0 | 35 | 45 | 3 | 0 | 0 |
15 [Doctor/healthcare provider] | 86 | 30 | 5 | 0 | 17 | 60 | 5 | 0 | 3 |
16 [Public transit stop] | 97 | 1 | 0 | 0 | 93 | 2 | 4 | 0 | 1 |
17 [Leisure-time physical activity] | 113 | 40 | 17 | 0 | 29 | 70 | 5 | 0 | 3 |
18 [Park] | 180 | 36 | 29 | 0 | 109 | 78 | 7 | 0 | 0 |
19 [Cultural activity] | 64 | 19 | 5 | 0 | 26 | 39 | 9 | 0 | 1 |
20 [Volunteering place] | 37 | 12 | 2 | 0 | 12 | 23 | 1 | 0 | 4 |
21 [Religious/spiritual activity] | 5 | 2 | 1 | 0 | 2 | 4 | 0 | 0 | 0 |
22 [Restaurant, café, bar, etc.] | 196 | 43 | 14 | 2 | 106 | 98 | 17 | 0 | 2 |
23 [Take-out] | 46 | 21 | 14 | 1 | 18 | 19 | 1 | 0 | 2 |
24 [Walk] | 168 | 24 | 15 | 0 | 137 | 61 | 2 | 0 | 0 |
25 [Other place] | 57 | 21 | 8 | 0 | 17 | 37 | 3 | 1 | 2 |
26 [Social contact residence] | 78 | 36 | 11 | 0 | 28 | 43 | 4 | 0 | 0 |
# graph
.tm1 <- .tm %>%
filter(location_tmode_1 == 1) %>%
mutate(tm = "[1] By car (driver)")
.tm2 <- .tm %>%
filter(location_tmode_2 == 1) %>%
mutate(tm = "[2] By car (passenger)")
.tm3 <- .tm %>%
filter(location_tmode_3 == 1) %>%
mutate(tm = "[3] By taxi/Uber")
.tm4 <- .tm %>%
filter(location_tmode_4 == 1) %>%
mutate(tm = "[4] On foot")
.tm5 <- .tm %>%
filter(location_tmode_5 == 1) %>%
mutate(tm = "[5] By bike")
.tm6 <- .tm %>%
filter(location_tmode_6 == 1) %>%
mutate(tm = "[6] By bus")
.tm7 <- .tm %>%
filter(location_tmode_7 == 1) %>%
mutate(tm = "[7] By train")
.tm99 <- .tm %>%
filter(location_tmode_99 == 1) %>%
mutate(tm = "[99] Other")
.tm <- bind_rows(.tm1, .tm2) %>%
bind_rows(.tm3) %>%
bind_rows(.tm4) %>%
bind_rows(.tm5) %>%
bind_rows(.tm6) %>%
bind_rows(.tm7) %>%
bind_rows(.tm99)
# histogram of answers
ggplot(data = .tm) +
geom_bar(aes(x = fct_rev(description), fill = tm), position = "fill") +
scale_fill_brewer(palette = "Set3", name = "Transport modes") +
scale_y_continuous(labels = percent) +
labs(y = "Proportion of transportation mode by location category", x = element_blank()) +
coord_flip() +
theme(legend.position = "bottom", legend.justification = c(0, 0), legend.text = element_text(size = 8)) +
guides(fill = guide_legend(nrow = 3))
Based on the answers to the question Do you usually go to this place alone or with other people?.
loc_labels <- data.frame(location_category = c(2:26), description = c(
" 2 [Other residence]",
" 3 [Work]",
" 4 [School/College/University]",
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]",
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]",
"16 [Public transit stop]",
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious/spiritual activity]",
"22 [Restaurant, café, bar, etc.]",
"23 [Take-out]",
"24 [Walk]",
"25 [Other place]",
"26 [Social contact residence]"
))
# extract and summary stats
.alone <- locations %>%
st_set_geometry(NULL) %>%
filter(location_category != 1 & location_current == 1) %>%
left_join(loc_labels) %>%
mutate(location_alone_recode = case_when(
location_alone2 == 1 ~ 1,
location_alone2 == 2 ~ 0
))
.alone_grouped <- .alone %>%
group_by(description) %>%
dplyr::summarise(
N = n(), "Visited alone" = sum(location_alone_recode),
"Visited alone (%)" = round(sum(location_alone_recode) * 100.0 / n(), digits = 1)
)
kable(.alone_grouped, caption = "Visiting places alone") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
description | N | Visited alone | Visited alone (%) |
---|---|---|---|
2 [Other residence] | 1 | 0 | 0.0 |
3 [Work] | 106 | 24 | 22.6 |
4 [School/College/University] | 2 | 1 | 50.0 |
5 [Supermarket] | 273 | 190 | 69.6 |
6 [Public/farmer’s market] | 35 | 14 | 40.0 |
7 [Bakery] | 53 | 28 | 52.8 |
8 [Specialty food store] | 47 | 29 | 61.7 |
9 [Convenience store/Dépanneur] | 13 | 11 | 84.6 |
11 [Bank] | 72 | 67 | 93.1 |
12 [Hair salon/barbershop] | 48 | 46 | 95.8 |
13 [Post office] | 59 | 54 | 91.5 |
14 [Drugstore] | 69 | 61 | 88.4 |
15 [Doctor/healthcare provider] | 86 | 76 | 88.4 |
16 [Public transit stop] | 97 | 76 | 78.4 |
17 [Leisure-time physical activity] | 113 | 35 | 31.0 |
18 [Park] | 180 | 49 | 27.2 |
19 [Cultural activity] | 64 | 13 | 20.3 |
20 [Volunteering place] | 37 | 12 | 32.4 |
21 [Religious/spiritual activity] | 5 | 1 | 20.0 |
22 [Restaurant, café, bar, etc.] | 196 | 42 | 21.4 |
23 [Take-out] | 46 | 19 | 41.3 |
24 [Walk] | 168 | 52 | 31.0 |
25 [Other place] | 57 | 23 | 40.4 |
26 [Social contact residence] | 78 | NA | NA |
# histogram of answers
ggplot(data = .alone) +
geom_bar(aes(x = fct_rev(description), fill = factor(location_alone2)), position = "fill") +
scale_fill_brewer(palette = "Set3", name = "Visiting places", labels = c("N/A", "Alone", "With someone")) +
scale_y_continuous(labels = percent) +
labs(y = "Proportion of places visited alone", x = element_blank()) +
coord_flip()
Based on the answers to the question How often do you go there?.
loc_labels <- data.frame(location_category = c(2:26), description = c(
" 2 [Other residence]",
" 3 [Work]",
" 4 [School/College/University]",
" 5 [Supermarket]",
" 6 [Public/farmer’s market]",
" 7 [Bakery]",
" 8 [Specialty food store]",
" 9 [Convenience store/Dépanneur]",
"10 [Liquor store/SAQ]",
"11 [Bank]",
"12 [Hair salon/barbershop]",
"13 [Post office]",
"14 [Drugstore]",
"15 [Doctor/healthcare provider]",
"16 [Public transit stop]",
"17 [Leisure-time physical activity]",
"18 [Park]",
"19 [Cultural activity]",
"20 [Volunteering place]",
"21 [Religious/spiritual activity]",
"22 [Restaurant, café, bar, etc.]",
"23 [Take-out]",
"24 [Walk]",
"25 [Other place]",
"26 [Social contact residence]"
))
# extract and summary stats
.freq <- locations %>%
st_set_geometry(NULL) %>%
filter(location_category != 1 & location_current == 1) %>%
left_join(loc_labels)
.freq_grouped <- .freq %>%
group_by(description) %>%
dplyr::summarise(
N = n(), min = min(location_freq_visit),
max = max(location_freq_visit),
mean = mean(location_freq_visit),
median = median(location_freq_visit),
sd = sd(location_freq_visit)
)
kable(.freq_grouped, caption = "Visit frequency (expressed in times/year)") %>% kable_styling(bootstrap_options = "striped", full_width = T, position = "left")
description | N | min | max | mean | median | sd |
---|---|---|---|---|---|---|
2 [Other residence] | 1 | 36 | 36 | 36.00000 | 36 | NA |
3 [Work] | 106 | 1 | 988 | 210.67925 | 260 | 123.284151 |
4 [School/College/University] | 2 | 72 | 260 | 166.00000 | 166 | 132.936075 |
5 [Supermarket] | 273 | 1 | 312 | 51.85348 | 36 | 58.004695 |
6 [Public/farmer’s market] | 35 | 1 | 104 | 20.11429 | 12 | 23.574377 |
7 [Bakery] | 53 | 2 | 208 | 29.88679 | 12 | 43.656729 |
8 [Specialty food store] | 47 | 1 | 156 | 28.89362 | 20 | 29.368894 |
9 [Convenience store/Dépanneur] | 13 | 4 | 156 | 38.00000 | 12 | 49.571497 |
11 [Bank] | 72 | 1 | 60 | 16.15278 | 12 | 15.963567 |
12 [Hair salon/barbershop] | 48 | 0 | 24 | 5.81250 | 4 | 5.114253 |
13 [Post office] | 59 | 1 | 208 | 15.03390 | 6 | 27.930928 |
14 [Drugstore] | 69 | 2 | 208 | 28.42029 | 12 | 36.971931 |
15 [Doctor/healthcare provider] | 86 | 0 | 52 | 5.77907 | 2 | 8.430199 |
16 [Public transit stop] | 97 | 0 | 260 | 23.64948 | 6 | 50.043740 |
17 [Leisure-time physical activity] | 113 | 0 | 364 | 80.61947 | 52 | 88.179334 |
18 [Park] | 180 | 0 | 364 | 54.72778 | 24 | 78.559079 |
19 [Cultural activity] | 64 | 1 | 260 | 23.43750 | 9 | 40.063788 |
20 [Volunteering place] | 37 | 2 | 364 | 76.08108 | 24 | 114.753692 |
21 [Religious/spiritual activity] | 5 | 52 | 364 | 156.00000 | 52 | 147.078211 |
22 [Restaurant, café, bar, etc.] | 196 | 0 | 520 | 26.09184 | 11 | 53.288203 |
23 [Take-out] | 46 | 2 | 52 | 11.89130 | 12 | 10.511852 |
24 [Walk] | 168 | 1 | 364 | 63.36310 | 24 | 88.074371 |
25 [Other place] | 57 | 0 | 728 | 56.84211 | 24 | 106.741140 |
26 [Social contact residence] | 78 | 1 | 364 | 48.84615 | 18 | 72.614277 |
# graph
ggplot(data = .freq) +
geom_boxplot(aes(x = fct_rev(description), y = location_freq_visit)) +
scale_y_continuous(limits = c(0, 365)) +
labs(y = "Visits/year (Frequency over 1 visit/day not shown)", x = element_blank()) +
coord_flip()
Below is a list of indicators proposed by Camille Perchoux in her paper Assessing patterns of spatial behavior in health studies: Their socio-demographic determinants and associations with transportation modes (the RECORD Cohort Study).
-- Reading Camille tbx indics from Essence table
SELECT interact_id,
n_acti_places, n_weekly_vst, n_acti_types,
cvx_perimeter, cvx_surface,
min_length, max_length, median_length,
pct_visits_neighb,
n_acti_prn, pct_visits_prn, prn_area_km2
FROM essence_table.essence_perchoux_tbx
WHERE city_id = 'Victoria' AND wave_id = 2 AND status = 'return'
2.10.5 Social indicators: Alexandre Naud’s toolbox
See Alex’s document for a more comprehensive presentation of the social indicators.
2.10.5.1 Number of people in the network (
people_degree
)2.10.5.2 Simmelian Brokerage (
simmelian
)2.10.5.3 Number of people with whom the participant like to socialize (
socialize_size
)2.10.5.4 Weekly face-to-face interactions among people with whom the participant like to socialize (
socialize_meet
)2.10.5.5 Weekly ICT interactions among people with whom the participant like to socialize (
socialize_chat
)2.10.5.6 Number of people with whom the participant discuss important matters (
important_size
)2.10.5.7 Number of people in all groups (
group_degree
)